## On the non-productivity of normality in Moore spaces

HTML articles powered by AMS MathViewer

- by H. Cook and G. M. Reed PDF
- Proc. Amer. Math. Soc.
**127**(1999), 875-880 Request permission

## Abstract:

Under Martin’s Axiom and the denial of the Continuum Hypothesis, the authors give examples of normal Moore spaces whose squares are not normal.## References

- K. Alster and T. Przymusiński,
*Normality and Martin’s axiom*, Fund. Math.**91**(1976), no. 2, 123–131. MR**415567**, DOI 10.4064/fm-91-2-123-131 - H. Cook,
*Cartesian products and continuous semi-metrics*, Proc. of the Arizona State University Top. Conf. (1968), 58–63. - —,
*Cartesian products and continuous semi-metrics*, II, preprint, 1976. - Howard Cook and Ben Fitzpatrick Jr.,
*Inverse limits of perfectly normal spaces*, Proc. Amer. Math. Soc.**19**(1968), 189–192. MR**220240**, DOI 10.1090/S0002-9939-1968-0220240-6 - Keith J. Devlin and Saharon Shelah,
*A note on the normal Moore space conjecture*, Canadian J. Math.**31**(1979), no. 2, 241–251. MR**528801**, DOI 10.4153/CJM-1979-025-8 - Ben Fitzpatrick Jr. and D. R. Traylor,
*Two theorems on metrizability of Moore spaces*, Pacific J. Math.**19**(1966), 259–264. MR**203686**, DOI 10.2140/pjm.1966.19.259 - William Fleissner,
*Normal Moore spaces in the constructible universe*, Proc. Amer. Math. Soc.**46**(1974), 294–298. MR**362240**, DOI 10.1090/S0002-9939-1974-0362240-4 - William G. Fleissner,
*Normal nonmetrizable Moore space from continuum hypothesis or nonexistence of inner models with measurable cardinals*, Proc. Nat. Acad. Sci. U.S.A.**79**(1982), no. 4, 1371–1372. MR**648069**, DOI 10.1073/pnas.79.4.1371 - F. B. Jones,
*Concerning normal and completely normal spaces*, Bull. Amer. Math. Soc.**43**(1937), 671–677. - Morgan Ward,
*Ring homomorphisms which are also lattice homomorphisms*, Amer. J. Math.**61**(1939), 783–787. MR**10**, DOI 10.2307/2371336 - Kenneth Kunen,
*On ordinal-metric intersection topologies*, Topology Appl.**22**(1986), no. 3, 315–319. MR**842665**, DOI 10.1016/0166-8641(86)90030-1 - R. L. Moore,
*Foundations of point set theory*, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722** - Teodor C. Przymusiński,
*Normality and separability of Moore spaces*, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975–1976) Academic Press, New York, 1977, pp. 325–337. MR**0448310** - G. M. Reed,
*On chain conditions in Moore spaces*, General Topology and Appl.**4**(1974), 255–267. MR**345076**, DOI 10.1016/0016-660X(74)90025-7 - G. M. Reed,
*On continuous images of Moore spaces*, Canadian J. Math.**26**(1974), 1475–1479. MR**397672**, DOI 10.4153/CJM-1974-142-3 - G. M. Reed,
*On the productivity of normality in Moore spaces*, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 479–484. MR**0397673** - G. M. Reed,
*The intersection topology w.r.t. the real line and the countable ordinals*, Trans. Amer. Math. Soc.**297**(1986), no. 2, 509–520. MR**854081**, DOI 10.1090/S0002-9947-1986-0854081-9 - —,
*Set-theoretic problems in Moore spaces*, Open Problems in Topology, North Holland (Amsterdam, 1990), 163–181. - —,
*$Q$-sets, stationary sets in $\omega _1$, and normal Moore spaces*, to appear. - G. M. Reed and P. L. Zenor,
*Metrization of Moore spaces and generalized manifolds*, Fund. Math.**91**(1976), no. 3, 203–210. MR**425918**, DOI 10.4064/fm-91-3-203-210 - F. D. Tall,
*Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems*, Dissertationes Math. (Rozprawy Mat.)**148**(1977), 53. MR**454913** - Franklin D. Tall,
*Normality versus collectionwise normality*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 685–732. MR**776634**

## Additional Information

**H. Cook**- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77004
**G. M. Reed**- Affiliation: St Edmund Hall, Oxford OX1 4AR, England
- Email: mike.reed@comlab.ox.ac.uk
- Received by editor(s): March 6, 1991
- Communicated by: Franklin D. Tall
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**127**(1999), 875-880 - MSC (1991): Primary 54E30, 54D15, 54A35; Secondary 54B10, 54A10
- DOI: https://doi.org/10.1090/S0002-9939-99-04051-4
- MathSciNet review: 1415580