Derived tubular strongly
simply connected algebras
Authors:
M. Barot and J. A. de la Peña
Journal:
Proc. Amer. Math. Soc. 127 (1999), 647-655
MSC (1991):
Primary 16G10, 16G60, 18E30.
DOI:
https://doi.org/10.1090/S0002-9939-99-04531-1
MathSciNet review:
1468181
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a finite dimensional algebra over an algebraically closed field
. Assume
for a connected quiver
and an admissible ideal
of
. We study algebras
which are derived equivalent to tubular algebras. If
is strongly simply connected and
has more than six vertices, then
is derived tubular if and only if (i) the homological quadratic form
is a non-negative of corank two and (ii) no vector of
is orthogonal (with respect tho the homological bilinear form) to the radical of
.
- 1. Ibrahim Assem and Andrzej Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. (3) 56 (1988), no. 3, 417–450. MR 931509, https://doi.org/10.1112/plms/s3-56.3.417
- 2. Ibrahim Assem and Andrzej Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. (3) 56 (1988), no. 3, 417–450. MR 931509, https://doi.org/10.1112/plms/s3-56.3.417
- 3. Ibrahim Assem and Andrzej Skowroński, Quadratic forms and iterated tilted algebras, J. Algebra 128 (1990), no. 1, 55–85. MR 1031912, https://doi.org/10.1016/0021-8693(90)90044-O
- 4. M. Barot, Representation-finite derived tubular algebras, To appear.
- 5. R. Bautista, F. Larrión, and L. Salmerón, On simply connected algebras, J. London Math. Soc. (2) 27 (1983), no. 2, 212–220. MR 692526, https://doi.org/10.1112/jlms/s2-27.2.212
- 6. Klaus Bongartz, Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), no. 3, 461–469. MR 724715, https://doi.org/10.1112/jlms/s2-28.3.461
- 7. Klaus Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), no. 1-3, 117–136. MR 735517, https://doi.org/10.1007/BF01185198
- 8. O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), no. 1, 21–40 (English, with French summary). MR 710374
- 9. I. R. Shafarevich (ed.), Algebra. VIII, Encyclopaedia of Mathematical Sciences, vol. 73, Springer-Verlag, Berlin, 1992. Representations of finite-dimensional algebras; A translation of Algebra, VIII (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow; Translation edited by A. I. Kostrikin and I. R. Shafarevich. MR 1239446
- 10. Dieter Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), no. 3, 339–389. MR 910167, https://doi.org/10.1007/BF02564452
- 11. David Hughes and Josef Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 347–364. MR 693045, https://doi.org/10.1112/plms/s3-46.2.347
- 12. J. A. de la Peña, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), no. 2, 183–194. MR 943535, https://doi.org/10.1007/BF01259327
- 13. J. A. de la Peña, On the corank of the Tits form of a tame algebra, J. Pure Appl. Algebra 107 (1996), no. 1, 89–105. MR 1377658, https://doi.org/10.1016/0022-4049(95)00031-3
- 14. J. A. de la Peña, The Tits form of a tame algebra, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 159–183. MR 1388563
- 15. Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589
- 16. Andrzej Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), no. 2, 177–199. MR 1016089, https://doi.org/10.1007/BF01443513
- 17. Andrzej Skowroński, Simply connected algebras and Hochschild cohomologies, Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992) Carleton-Ottawa Math. Lecture Note Ser., vol. 14, Carleton Univ., Ottawa, ON, 1992, pp. 18. MR 1206961
- 18. A. Skowro\'{n}ski, Tame algebras with simply connected Galois coverings, Preprint, Poland (1996).
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16G10, 16G60, 18E30.
Retrieve articles in all journals with MSC (1991): 16G10, 16G60, 18E30.
Additional Information
M. Barot
Affiliation:
Instituto de Matemáticas, UNAM, 04510 México, D.F., México
Email:
barot@gauss.matem.unam.mx
J. A. de la Peña
Affiliation:
Instituto de Matemáticas, UNAM, 04510 México, D.F., México
Email:
jap@penelope.matem.unam.mx
DOI:
https://doi.org/10.1090/S0002-9939-99-04531-1
Received by editor(s):
December 2, 1996
Received by editor(s) in revised form:
June 12, 1997
Additional Notes:
This work was partially supported by CONACYT and DGAPA, UNAM
Communicated by:
Ken Goodearl
Article copyright:
© Copyright 1999
American Mathematical Society