## Derived tubular strongly simply connected algebras

HTML articles powered by AMS MathViewer

- by M. Barot and J. A. de la Peña PDF
- Proc. Amer. Math. Soc.
**127**(1999), 647-655 Request permission

## Abstract:

Let $A$ be a finite dimensional algebra over an algebraically closed field $k$. Assume $A=kQ/I$ for a connected quiver $Q$ and an admissible ideal $I$ of $kQ$. We study algebras $A$ which are derived equivalent to tubular algebras. If $A$ is strongly simply connected and $Q$ has more than six vertices, then $A$ is derived tubular if and only if (i) the homological quadratic form $\chi _A$ is a non-negative of corank two and (ii) no vector of $\chi _A ^{-1}(1)$ is orthogonal (with respect tho the homological bilinear form) to the radical of $\chi _A$.## References

- Ibrahim Assem and Andrzej Skowroński,
*On some classes of simply connected algebras*, Proc. London Math. Soc. (3)**56**(1988), no. 3, 417–450. MR**931509**, DOI 10.1112/plms/s3-56.3.417 - Ibrahim Assem and Andrzej Skowroński,
*On some classes of simply connected algebras*, Proc. London Math. Soc. (3)**56**(1988), no. 3, 417–450. MR**931509**, DOI 10.1112/plms/s3-56.3.417 - Ibrahim Assem and Andrzej Skowroński,
*Quadratic forms and iterated tilted algebras*, J. Algebra**128**(1990), no. 1, 55–85. MR**1031912**, DOI 10.1016/0021-8693(90)90044-O - M. Barot,
*Representation-finite derived tubular algebras*,*To appear.* - R. Bautista, F. Larrión, and L. Salmerón,
*On simply connected algebras*, J. London Math. Soc. (2)**27**(1983), no. 2, 212–220. MR**692526**, DOI 10.1112/jlms/s2-27.2.212 - Klaus Bongartz,
*Algebras and quadratic forms*, J. London Math. Soc. (2)**28**(1983), no. 3, 461–469. MR**724715**, DOI 10.1112/jlms/s2-28.3.461 - Klaus Bongartz,
*Critical simply connected algebras*, Manuscripta Math.**46**(1984), no. 1-3, 117–136. MR**735517**, DOI 10.1007/BF01185198 - O. Bretscher and P. Gabriel,
*The standard form of a representation-finite algebra*, Bull. Soc. Math. France**111**(1983), no. 1, 21–40 (English, with French summary). MR**710374**, DOI 10.24033/bsmf.1975 - I. R. Shafarevich (ed.),
*Algebra. VIII*, Encyclopaedia of Mathematical Sciences, vol. 73, Springer-Verlag, Berlin, 1992. Representations of finite-dimensional algebras; A translation of*Algebra, VIII (Russian)*, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow; Translation edited by A. I. Kostrikin and I. R. Shafarevich. MR**1239446** - Dieter Happel,
*On the derived category of a finite-dimensional algebra*, Comment. Math. Helv.**62**(1987), no. 3, 339–389. MR**910167**, DOI 10.1007/BF02564452 - David Hughes and Josef Waschbüsch,
*Trivial extensions of tilted algebras*, Proc. London Math. Soc. (3)**46**(1983), no. 2, 347–364. MR**693045**, DOI 10.1112/plms/s3-46.2.347 - J. A. de la Peña,
*On the representation type of one point extensions of tame concealed algebras*, Manuscripta Math.**61**(1988), no. 2, 183–194. MR**943535**, DOI 10.1007/BF01259327 - J. A. de la Peña,
*On the corank of the Tits form of a tame algebra*, J. Pure Appl. Algebra**107**(1996), no. 1, 89–105. MR**1377658**, DOI 10.1016/0022-4049(95)00031-3 - J. A. de la Peña,
*The Tits form of a tame algebra*, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 159–183. MR**1388563** - Claus Michael Ringel,
*Tame algebras and integral quadratic forms*, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR**774589**, DOI 10.1007/BFb0072870 - Andrzej Skowroński,
*Selfinjective algebras of polynomial growth*, Math. Ann.**285**(1989), no. 2, 177–199. MR**1016089**, DOI 10.1007/BF01443513 - Andrzej Skowroński,
*Simply connected algebras and Hochschild cohomologies*, Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992) Carleton-Ottawa Math. Lecture Note Ser., vol. 14, Carleton Univ., Ottawa, ON, 1992, pp. 18. MR**1206961** - A. Skowroński,
*Tame algebras with simply connected Galois coverings*,*Preprint, Poland*(1996).

## Additional Information

**M. Barot**- Affiliation: Instituto de Matemáticas, UNAM, 04510 México, D.F., México
- Email: barot@gauss.matem.unam.mx
**J. A. de la Peña**- Affiliation: Instituto de Matemáticas, UNAM, 04510 México, D.F., México
- Email: jap@penelope.matem.unam.mx
- Received by editor(s): December 2, 1996
- Received by editor(s) in revised form: June 12, 1997
- Additional Notes: This work was partially supported by CONACYT and DGAPA, UNAM
- Communicated by: Ken Goodearl
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**127**(1999), 647-655 - MSC (1991): Primary 16G10, 16G60, 18E30
- DOI: https://doi.org/10.1090/S0002-9939-99-04531-1
- MathSciNet review: 1468181