Symmetries of Accola-Maclachlan and Kulkarni surfaces
HTML articles powered by AMS MathViewer
- by S. A. Broughton, E. Bujalance, A. F. Costa, J. M. Gamboa and G. Gromadzki
- Proc. Amer. Math. Soc. 127 (1999), 637-646
- DOI: https://doi.org/10.1090/S0002-9939-99-04534-7
- PDF | Request permission
Abstract:
For all $g \ge 2$ there is a Riemann surface of genus $g$ whose automorphism group has order $8g+8$, establishing a lower bound for the possible orders of automorphism groups of Riemann surfaces. Accola and Maclachlan established the existence of such surfaces; we shall call them Accola-Maclachlan surfaces. Later Kulkarni proved that for sufficiently large $g$ the Accola-Maclachlan surface was unique for $g= 0,1,2\mod 4$ and produced exactly one additional surface (the Kulkarni surface) for $g= 3\mod 4$. In this paper we determine the symmetries of these special surfaces, computing the number of ovals and the separability of the symmetries. The results are then applied to classify the real forms of these complex algebraic curves. Explicit equations of these real forms of Accola-Maclachlan surfaces are given in all but one case.References
- Robert D. M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398–408. MR 222281, DOI 10.1090/S0002-9947-1968-0222281-6
- S. A. Broughton, E. Bujalance, A. F. Costa, J. M. Gamboa, and G. Gromadzki, Symmetries of Riemann surfaces on which $\textrm {PSL}(2,q)$ acts as a Hurwitz automorphism group, J. Pure Appl. Algebra 106 (1996), no. 2, 113–126. MR 1372846, DOI 10.1016/0022-4049(94)00065-4
- E. Bujalance and A. F. Costa, A combinatorial approach to the symmetries of $M$ and $M-1$ Riemann surfaces, Discrete groups and geometry (Birmingham, 1991) London Math. Soc. Lecture Note Ser., vol. 173, Cambridge Univ. Press, Cambridge, 1992, pp. 16–25. MR 1196912, DOI 10.1017/CBO9780511565793.004
- Gromadzki G.: Groups of Automorphisms of Compact Riemann and Klein Surfaces. Habilitazionschrift. University Press WSP Bydgoszcz (1993).
- Harnack A.: Über die Vieltheiligkeit der ebenen algebraischen Kurven. Math. Ann. 10 (1876), 189–199.
- A. H. M. Hoare and D. Singerman, The orientability of subgroups of plane groups, Groups—St. Andrews 1981 (St. Andrews, 1981) London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge, 1982, pp. 221–227. MR 679163, DOI 10.1017/CBO9780511661884.014
- Hurwitz A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41 (1893), 402–442.
- Ravi S. Kulkarni, A note on Wiman and Accola-Maclachlan surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 1, 83–94. MR 1127698, DOI 10.5186/aasfm.1991.1615
- A. M. Macbeath, On a theorem of Hurwitz, Proc. Glasgow Math. Assoc. 5 (1961), 90–96 (1961). MR 146724, DOI 10.1017/S2040618500034365
- Macbeath A. M.: Discontinuous groups and birational transformations. Proc. of Dundee Summer School, Univ. of St. Andrews (1961).
- A. M. Macbeath, Action of automorphisms of a compact Riemann surface on the first homology group, Bull. London Math. Soc. 5 (1973), 103–108. MR 320301, DOI 10.1112/blms/5.1.103
- C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface, J. London Math. Soc. 44 (1969), 265–272. MR 236378, DOI 10.1112/jlms/s1-44.1.265
- Kenji Nakagawa, On the orders of automorphisms of a closed Riemann surface, Pacific J. Math. 115 (1984), no. 2, 435–443. MR 765199, DOI 10.2140/pjm.1984.115.435
- S. M. Natanzon, Automorphisms of the Riemann surface of an $M$-curve, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 82–83 (Russian). MR 509395
- D. Singerman, Automorphisms of compact non-orientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50–59. MR 296286, DOI 10.1017/S0017089500001142
- Weichold G.: Über symmetrische Riemanns’che Flächen und die Periodicitäsmoduln der zugehörin Abel’schen Normalintegrale erster Gattung. Zeitschrift für Math. und Phys. 28 (1883), 321–351.
Bibliographic Information
- S. A. Broughton
- Affiliation: Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803
- MR Author ID: 42020
- Email: allen.broughton@rose-hulman.edu
- E. Bujalance
- Affiliation: Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803
- MR Author ID: 43085
- Email: eb@mat.uned.es
- A. F. Costa
- Affiliation: Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803
- MR Author ID: 51935
- ORCID: 0000-0002-9905-0264
- Email: acosta@mat.uned.es
- J. M. Gamboa
- Affiliation: Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803
- Email: jmgamboa@eucmax.sim.ucm.es
- G. Gromadzki
- Affiliation: Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803
- Email: greggrom@mat.uned.es
- Received by editor(s): November 15, 1995
- Received by editor(s) in revised form: June 5, 1997
- Additional Notes: The second and third authors were partially supported by DGICYT PB 95-0017 and CEE-CHRX-CT93-0408.
The fourth author was partially supported by DGICYT PB 95-0354 and CEE-CHRX-CT93-0408
The fifth author was partially supported by the Pedagogical University of Bydgoszcz. - Communicated by: Albert Baernstein II
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 637-646
- MSC (1991): Primary 14H45, 14E09, 14H30
- DOI: https://doi.org/10.1090/S0002-9939-99-04534-7
- MathSciNet review: 1468184