## The Bergman kernel function: Explicit formulas and zeroes

HTML articles powered by AMS MathViewer

- by Harold P. Boas, Siqi Fu and Emil J. Straube PDF
- Proc. Amer. Math. Soc.
**127**(1999), 805-811 Request permission

## Abstract:

We show how to compute the Bergman kernel functions of some special domains in a simple way. As an application of the explicit formulas, we show that the Bergman kernel functions of some convex domains, for instance the domain in $\mathbb {C}^3$ defined by the inequality $|z_1|+|z_2|+|z_3|<1$, have zeroes.## References

- Steven R. Bell,
*The Bergman kernel function and proper holomorphic mappings*, Trans. Amer. Math. Soc.**270**(1982), no. 2, 685–691. MR**645338**, DOI 10.1090/S0002-9947-1982-0645338-1 - Stefan Bergmann (Bergman),
*Zur Theorie von pseudokonformen Abbildungen*, Mat. Sb. (N.S.)**1 (43)**(1936), no. 1, 79–96. - Harold P. Boas,
*The Lu Qi-Keng conjecture fails generically*, Proc. Amer. Math. Soc.**124**(1996), no. 7, 2021–2027. MR**1317032**, DOI 10.1090/S0002-9939-96-03259-5 - Bruce L. Chalmers,
*On boundary behavior of the Bergman kernel function and related domain functionals*, Pacific J. Math.**29**(1969), 243–250. MR**247133**, DOI 10.2140/pjm.1969.29.243 - John P. D’Angelo,
*A note on the Bergman kernel*, Duke Math. J.**45**(1978), no. 2, 259–265. MR**473231** - John P. D’Angelo,
*An explicit computation of the Bergman kernel function*, J. Geom. Anal.**4**(1994), no. 1, 23–34. MR**1274136**, DOI 10.1007/BF02921591 - G. P. Egorychev,
*Integral representation and the computation of combinatorial sums*, Translations of Mathematical Monographs, vol. 59, American Mathematical Society, Providence, RI, 1984. Translated from the Russian by H. H. McFadden; Translation edited by Lev J. Leifman. MR**736151**, DOI 10.1090/mmono/059 - Gábor Francsics and Nicholas Hanges,
*The Bergman kernel of complex ovals and multivariable hypergeometric functions*, J. Funct. Anal.**142**(1996), no. 2, 494–510. MR**1423042**, DOI 10.1006/jfan.1996.0157 - —,
*Asymptotic behavior of the Bergman kernel and hypergeometric functions*, Multidimensional Complex Analysis and Partial Differential Equations, Contemporary Mathematics, vol. 205, American Mathematical Society, 1997, pp. 79–92. - Marek Jarnicki and Peter Pflug,
*Invariant distances and metrics in complex analysis*, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR**1242120**, DOI 10.1515/9783110870312 - Ewa Ligocka,
*On the Forelli-Rudin construction and weighted Bergman projections*, Studia Math.**94**(1989), no. 3, 257–272. MR**1019793**, DOI 10.4064/sm-94-3-257-272 - Q.-k. Lu,
*On Kaehler manifolds with constant curvature*, Chinese Math.–Acta**8**(1966), 283–298. MR**0206990** - K. Oeljeklaus, P. Pflug, and E. H. Youssfi,
*The Bergman kernel of the minimal ball and applications*, Ann. Inst. Fourier (Grenoble)**47**(1997), no. 3, 915–928 (English, with English and French summaries). MR**1465791**, DOI 10.5802/aif.1585 - I. Ramadanov,
*Sur une propriété de la fonction de Bergman*, C. R. Acad. Bulgare Sci.**20**(1967), 759–762 (French). MR**226042** - B. S. Zinov′ev,
*Reproducing kernels for multicircular domains of holomorphy*, Sibirsk. Mat. Ž.**15**(1974), 35–48, 236 (Russian). MR**0333230**

## Additional Information

**Harold P. Boas**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843–3368
- MR Author ID: 38310
- ORCID: 0000-0002-5031-3414
- Email: boas@math.tamu.edu
**Siqi Fu**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843–3368
- Address at time of publication: Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071-3036
- Email: sfu@math.tamu.edu
**Emil J. Straube**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843–3368
- MR Author ID: 168030
- Email: straube@math.tamu.edu
- Received by editor(s): June 30, 1997
- Additional Notes: This research was supported in part by NSF grant number DMS 9500916.
- Communicated by: Steven R. Bell
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**127**(1999), 805-811 - MSC (1991): Primary 32H10
- DOI: https://doi.org/10.1090/S0002-9939-99-04570-0
- MathSciNet review: 1469401