A class of differentiable toral maps

which are topologically mixing

Author:
Naoya Sumi

Journal:
Proc. Amer. Math. Soc. **127** (1999), 915-924

MSC (1991):
Primary 58F12

DOI:
https://doi.org/10.1090/S0002-9939-99-04608-0

MathSciNet review:
1469436

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that on the 2-torus there exists a open set of regular maps such that every map belonging to is topologically mixing but is not Anosov. It was shown by Mañé that this property fails for the class of toral diffeomorphisms, but that the property does hold for the class of diffeomorphisms on the 3-torus . Recently Bonatti and Diaz proved that the second result of Mañé is also true for the class of diffeomorphisms on the -torus ().

**[1]**D.V. Anosov,*Geodesic flows on closed Riemannian manifolds with negative curvature*, Proc. Steklov Inst. Math.**90**(1967). MR**39:3527****[2]**N. Aoki and K. Hiraide,*Topological Theory of Dynamical Systems*, Mathematical Library, North Holland, 1994. MR**95m:58095****[3]**C. Bonatti and L.J. Diaz,*Persistent nonhyperbolic transitive diffeomorphisms*, Ann. of Math.**(2) 143**(1996), 357-396. MR**97d:58122****[4]**R.L. Devaney,*An Introduction to Chaotic Dynamical Systems, Second Edition*, Addison-Wesley, 1989. MR**91a:58114****[5]**J. Franks,*Anosov diffeomorphisms*, Global Analysis, Proc. Sympos. Pure Math., 14, Amer. Math. Soc. (1970), 61-93. MR**42:6871****[6]**M. Hirsch and C. Pugh,*Stable manifolds and hyperbolic sets*, Global Analysis, Proc. Sympos. Pure Math., 14, Amer. Math. Soc. (1970), 133-163. MR**42:6872****[7]**R. Mañé,*Contributions to the stability conjecture*, Topology**17**(1978), 383-396. MR**84b:58061****[8]**R. Mañé and C. Pugh,*Stability of endomorphisms*, Lecture Notes in Math., 468, Springer-Verlag (1975), 175-184. MR**58:31264****[9]**A. Manning,*There are no new Anosov diffeomorphisms on tori*, Amer. J. Math.**96**(1974), 422-429. MR**58:11324****[10]**S. Newhouse,*Hyperbolic limit sets*, Trans. Amer. Math. Soc.**167**(1972), 125-150. MR**45:4454****[11]**J. Palis and F. Takens,*Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations*, Cambridge University Press, 1993. MR**94h:58129****[12]**F. Przytycki,*Anosov endomorphisms*, Studia Math.**58**(1976), 249-285. MR**56:3893****[13]**M. Shub,*Endomorphisms of compact differentiable manifolds*, Amer. J. Math.**91**(1969), 175-199. MR**39:2169****[14]**S. Smale,*Differentiable dynamical systems*, Bull. Amer. Math. Soc.**73**(1967), 747-817. MR**37:3598****[15]**R. Williams,*The ``DA" maps of Smale and structural stability*, Global Analysis, Proc. Sympos. Pure Math. 14, Amer. Math. Soc. (1970), 329-334.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58F12

Retrieve articles in all journals with MSC (1991): 58F12

Additional Information

**Naoya Sumi**

Affiliation:
Department of Mathematics, Tokyo Metropolitan University, Tokyo 192-03, Japan

Email:
sumi@math.metro-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-99-04608-0

Keywords:
Anosov differentiable map,
DA-map,
sensitive dependence on initial conditions,
topological mixing,
transversal homoclinic point

Received by editor(s):
November 26, 1996

Received by editor(s) in revised form:
June 26, 1997

Communicated by:
Mary Rees

Article copyright:
© Copyright 1999
American Mathematical Society