On the constructible numbers
Author:
Carlos R. Videla
Journal:
Proc. Amer. Math. Soc. 127 (1999), 851-860
MSC (1991):
Primary 03C68, 11R04
DOI:
https://doi.org/10.1090/S0002-9939-99-04611-0
MathSciNet review:
1469439
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be the field of constructible numbers, i.e. the numbers constructed from a given unit length using ruler and compass. We prove
is definable in
.
- 1. Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR 0356989
- 2. Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- 3. A. Macintyre and A. Wilkie, On the decidability of the real exponential field, Oxford Univ., 1993, preprint.
- 4. Jürgen Neukirch, Class field theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231
- 5. J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949). MR 11:151f
- 6. R. S. Rumely, Undecidability and definability for the theory of global fields, Trans. Amer. Math. Soc. 262 (1980), no. 1, 195–217. MR 583852, https://doi.org/10.1090/S0002-9947-1980-0583852-6
- 7. A. Tarski, A decision method for elementary algebra and geometry, Rand Corporation, California, 1948. MR 10:499f
- 8.
C. Videla, Definability of the ring of integers of pro-
extensions of number fields, in preparation.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 03C68, 11R04
Retrieve articles in all journals with MSC (1991): 03C68, 11R04
Additional Information
Carlos R. Videla
Affiliation:
Departamento de Matemáticas, CINVESTAV-IPN, Av. IPN No. 2508, 07000 México D.F., Mexico
Email:
cvidela@math.cinvestav.mx
DOI:
https://doi.org/10.1090/S0002-9939-99-04611-0
Keywords:
Algebraic integer,
constructible number,
definable
Received by editor(s):
March 20, 1996
Received by editor(s) in revised form:
June 25, 1997
Communicated by:
Andreas R. Blass
Article copyright:
© Copyright 1999
American Mathematical Society