## Nontoric Hamiltonian circle actions on four-dimensional symplectic orbifolds

HTML articles powered by AMS MathViewer

- by S. F. Singer, J. Talvacchia and N. Watson PDF
- Proc. Amer. Math. Soc.
**127**(1999), 937-940 Request permission

## Abstract:

We construct four-dimensional symplectic orbifolds admitting Hamiltonian circle actions with isolated fixed points, but not admitting any Hamiltonian action of a two-torus. One example is linear, and one example is compact.## References

- K. Ahara and A. Hattori,
*$4$-dimensional symplectic $S^1$-manifolds admitting moment map*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**38**(1991), no.Â 2, 251â€“298. MR**1127083** - M. F. Atiyah,
*Convexity and commuting Hamiltonians*, Bull. London Math. Soc.**14**(1982), no.Â 1, 1â€“15. MR**642416**, DOI 10.1112/blms/14.1.1 - MichĂ¨le Audin,
*Hamiltoniens pĂ©riodiques sur les variĂ©tĂ©s symplectiques compactes de dimension $4$*, GĂ©omĂ©trie symplectique et mĂ©canique (La Grande Motte, 1988) Lecture Notes in Math., vol. 1416, Springer, Berlin, 1990, pp.Â 1â€“25 (French). MR**1047474**, DOI 10.1007/BFb0097462 - V. Guillemin and S. Sternberg,
*Convexity properties of the moment mapping*, Invent. Math.**67**(1982), no.Â 3, 491â€“513. MR**664117**, DOI 10.1007/BF01398933 - Karshon, Y., Periodic Hamiltonian flows on fourâ€“dimensional manifolds, Trans. AMS, submitted. (Available electronically at dg-ga/9510004.)
- Eugene Lerman and Susan Tolman,
*Hamiltonian torus actions on symplectic orbifolds and toric varieties*, Trans. Amer. Math. Soc.**349**(1997), no.Â 10, 4201â€“4230. MR**1401525**, DOI 10.1090/S0002-9947-97-01821-7 - Tolman, S., Examples of Non-Kaehler Hamiltonian Torus Actions, Invent. Math., to appear.

## Additional Information

**S. F. Singer**- Affiliation: Department of Mathematics, Haverford College, Haverford, Pennsylvania 19041
- Email: ssinger@haverford.edu
**J. Talvacchia**- Affiliation: Department of Mathematics, Swarthmore College, Swarthmore, Pennsylvania 19081
- Email: jtalvac1@swarthmore.edu
**N. Watson**- Affiliation: Department of Mathematics, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Received by editor(s): July 8, 1997
- Additional Notes: The second author was supported in part by a fellowship from the American Association of University Women and NSF grant DMS 9304580.
- Communicated by: Peter Li
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**127**(1999), 937-940 - MSC (1991): Primary 58Fxx
- DOI: https://doi.org/10.1090/S0002-9939-99-04767-X
- MathSciNet review: 1487340