A one-point attractor theory for the Navier-Stokes equation on thin domains with no-slip boundary conditions
HTML articles powered by AMS MathViewer
- by Joel D. Avrin
- Proc. Amer. Math. Soc. 127 (1999), 725-735
- DOI: https://doi.org/10.1090/S0002-9939-99-04864-9
- PDF | Request permission
Abstract:
In an earlier paper related to recent results of Raugel and Sell for periodic boundary conditions, we considered the incompressible Navier-Stokes equations on 3-dimensional thin domains with zero (“no-slip”) boundary conditions and established global regularity results. We extend those results here by developing an attractor theory. We first show that under similar thinness restrictions trajectories of solutions approach each other in $L^4$-norm exponentially. Next, for constant-in-time forcing data $f_1=f_1\left ( x\right ) ,$ we suppose that $f\left ( t\right ) \rightarrow f_1$ in $L^2$ as $t\rightarrow +\infty ,$ and show that if $v$ and $w_1$ solve the equations with forcing data $f$ and $f_1$, respectively, then $\left \| v\left ( t\right ) -w_1\left ( t\right ) \right \| _4\rightarrow 0$ as $t\rightarrow +\infty .$ For similar thinness restrictions we show that the steady-flow equations with forcing data $f_1$ have a unique solution $u_s$. Under both thinness assumptions we then have that all solutions $v\left ( t\right )$ converge to $u_s$ in $L_4$ as $t\rightarrow +\infty$; thus we have a one-point attractor for strong solutions. In fact, we have a one-point attractor for the Leray solutions as well. Moreover, under significantly more relaxed thinness assumptions we are able to show that Leray solutions nonetheless eventually become regular.References
- Joel D. Avrin, Large-eigenvalue global existence and regularity results for the Navier-Stokes equation, J. Differential Equations 127 (1996), no. 2, 365–390. MR 1389401, DOI 10.1006/jdeq.1996.0074
- C. Foiaş and G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$, Rend. Sem. Mat. Univ. Padova 39 (1967), 1–34 (French). MR 223716
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- Hiroshi Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269–315. MR 166499, DOI 10.1007/BF00276188
- Yoshikazu Giga and Tetsuro Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 89 (1985), no. 3, 267–281. MR 786550, DOI 10.1007/BF00276875
- Colette Guillopé, Comportement à l’infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariants (ou attracteurs), C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 6, 221–224 (French, with English summary). MR 654041, DOI 10.5802/aif.879
- John G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), no. 5, 639–681. MR 589434, DOI 10.1512/iumj.1980.29.29048
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- O. A. Ladyženskaja, Matematicheskie voprosy dinamiki vyazkoĭneszhimaemoĭ zhidkosti, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). MR 0155092
- J. Leray, Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82.
- Geneviève Raugel and George R. Sell, Navier-Stokes equations on thin $3$D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), no. 3, 503–568. MR 1179539, DOI 10.1090/S0894-0347-1993-1179539-4
- James Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962), 187–195. MR 136885, DOI 10.1007/BF00253344
- Roger Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR 0609732
- Roger Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 764933
Bibliographic Information
- Joel D. Avrin
- Affiliation: Department of Mathematics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223
- Email: jdavrin@email.uncc.edu
- Received by editor(s): August 7, 1996
- Received by editor(s) in revised form: June 9, 1997
- Communicated by: Jeffrey B. Rauch
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 725-735
- MSC (1991): Primary 35B40, 35Q10
- DOI: https://doi.org/10.1090/S0002-9939-99-04864-9
- MathSciNet review: 1605915