Dimension of a minimal nilpotent orbit
HTML articles powered by AMS MathViewer
- by Weiqiang Wang
- Proc. Amer. Math. Soc. 127 (1999), 935-936
- DOI: https://doi.org/10.1090/S0002-9939-99-04946-1
- PDF | Request permission
Abstract:
We show that the dimension of the minimal nilpotent coadjoint orbit for a complex simple Lie algebra is equal to twice the dual Coxeter number minus two.References
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Victor Kac and Weiqiang Wang, Vertex operator superalgebras and their representations, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992) Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 161–191. MR 1302018, DOI 10.1090/conm/175/01843
- W. Wang, Representations of vertex operator algebras and superalgebras, Massachusetts Institute of Technology Ph.D. thesis, 1995.
Bibliographic Information
- Weiqiang Wang
- Affiliation: Max-Planck Institut für Mathematik, 53225 Bonn, Germany
- Address at time of publication: Department of Mathematics, Yale University, New Haven, Connecticut 06520
- MR Author ID: 339426
- Email: wqwang@math.yale.edu
- Received by editor(s): July 7, 1997
- Communicated by: Roe Goodman
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 935-936
- MSC (1991): Primary 22E10; Secondary 17B20
- DOI: https://doi.org/10.1090/S0002-9939-99-04946-1
- MathSciNet review: 1610801