## Codimension 2 nonfibrators with finite fundamental groups

HTML articles powered by AMS MathViewer

- by R. J. Daverman PDF
- Proc. Amer. Math. Soc.
**127**(1999), 881-888 Request permission

## Abstract:

Fibrators are $n$-manifolds which automatically induce approximate fibrations, in the following sense: given any proper mapping $p$ from an $(n+k)$-manifold onto a finite-dimensional metric space such that, up to shape, each point-preimage is a copy of the fibrator, $p$ is necessarily an approximate fibration. This paper sets forth new examples, for the case $k=2$, of nonfibrators whose fundamental groups are finite.## References

- N. Chinen,
*Manifolds with nonzero Euler characteristic and codimension $2$ fibrators,*Topology Appl.**86**(1998), 151–167. -
*Finite groups and approximate fibrations,*preprint. - Marshall M. Cohen,
*A course in simple-homotopy theory*, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR**0362320**, DOI 10.1007/978-1-4684-9372-6 - D. S. Coram and P. F. Duvall Jr.,
*Approximate fibrations*, Rocky Mountain J. Math.**7**(1977), no. 2, 275–288. MR**442921**, DOI 10.1216/RMJ-1977-7-2-275 - Donald Coram and Paul Duvall,
*Approximate fibrations and a movability condition for maps*, Pacific J. Math.**72**(1977), no. 1, 41–56. MR**467745**, DOI 10.2140/pjm.1977.72.41 - D. Coram and P. Duvall,
*Nondegenerate $k$-sphere mappings between spheres*, Topology Proc.**4**(1979), no. 1, 67–82 (1980). MR**583689** - R. J. Daverman,
*Decompositions into codimension two submanifolds: the nonorientable case*, Topology Appl.**24**(1986), no. 1-3, 71–81. Special volume in honor of R. H. Bing (1914–1986). MR**872479**, DOI 10.1016/0166-8641(86)90050-7 - R. J. Daverman,
*Submanifold decompositions that induce approximate fibrations*, Topology Appl.**33**(1989), no. 2, 173–184. MR**1020279**, DOI 10.1016/S0166-8641(89)80006-9 - Robert J. Daverman,
*Manifolds with finite first homology as codimension $2$ fibrators*, Proc. Amer. Math. Soc.**113**(1991), no. 2, 471–477. MR**1086581**, DOI 10.1090/S0002-9939-1991-1086581-0 - Robert J. Daverman,
*$3$-manifolds with geometric structure and approximate fibrations*, Indiana Univ. Math. J.**40**(1991), no. 4, 1451–1469. MR**1142723**, DOI 10.1512/iumj.1991.40.40065 - R. J. Daverman,
*Hyper-Hopfian groups and approximate fibrations*, Compositio Math.**86**(1993), no. 2, 159–176. MR**1214455** - R. J. Daverman and J. J. Walsh,
*Decompositions into codimension-two manifolds*, Trans. Amer. Math. Soc.**288**(1985), no. 1, 273–291. MR**773061**, DOI 10.1090/S0002-9947-1985-0773061-4 - Charles H. Giffen,
*The generalized Smith conjecture*, Amer. J. Math.**88**(1966), 187–198. MR**198462**, DOI 10.2307/2373054 - Young Ho Im,
*Products of surfaces that induce approximate fibrations*, Houston J. Math.**21**(1995), no. 2, 339–348. MR**1342414** - R. C. Kirby and L. C. Siebenmann,
*Normal bundles for codimension $2$ locally flat imbeddings*, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 310–324. MR**0400237** - C. P. Rourke and B. J. Sanderson,
*Introduction to piecewise-linear topology*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR**0350744**, DOI 10.1007/978-3-642-81735-9 - E. C. Zeeman,
*Twisting spun knots*, Trans. Amer. Math. Soc.**115**(1965), 471–495. MR**195085**, DOI 10.1090/S0002-9947-1965-0195085-8

## Additional Information

**R. J. Daverman**- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300
- Email: daverman@novell.math.utk.edu
- Received by editor(s): May 24, 1997
- Additional Notes: This research was supported in part by NSF Grant DMS-9401086.
- Communicated by: Ralph Cohen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**127**(1999), 881-888 - MSC (1991): Primary 55R65, 57N15, 57N10; Secondary 57S37, 57N55
- DOI: https://doi.org/10.1090/S0002-9939-99-05192-8
- MathSciNet review: 1646311