Codimension 2 nonfibrators with finite fundamental groups
HTML articles powered by AMS MathViewer
- by R. J. Daverman
- Proc. Amer. Math. Soc. 127 (1999), 881-888
- DOI: https://doi.org/10.1090/S0002-9939-99-05192-8
- PDF | Request permission
Abstract:
Fibrators are $n$-manifolds which automatically induce approximate fibrations, in the following sense: given any proper mapping $p$ from an $(n+k)$-manifold onto a finite-dimensional metric space such that, up to shape, each point-preimage is a copy of the fibrator, $p$ is necessarily an approximate fibration. This paper sets forth new examples, for the case $k=2$, of nonfibrators whose fundamental groups are finite.References
- N. Chinen, Manifolds with nonzero Euler characteristic and codimension $2$ fibrators, Topology Appl. 86 (1998), 151–167.
- , Finite groups and approximate fibrations, preprint.
- Marshall M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR 0362320, DOI 10.1007/978-1-4684-9372-6
- D. S. Coram and P. F. Duvall Jr., Approximate fibrations, Rocky Mountain J. Math. 7 (1977), no. 2, 275–288. MR 442921, DOI 10.1216/RMJ-1977-7-2-275
- Donald Coram and Paul Duvall, Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), no. 1, 41–56. MR 467745, DOI 10.2140/pjm.1977.72.41
- D. Coram and P. Duvall, Nondegenerate $k$-sphere mappings between spheres, Topology Proc. 4 (1979), no. 1, 67–82 (1980). MR 583689
- R. J. Daverman, Decompositions into codimension two submanifolds: the nonorientable case, Topology Appl. 24 (1986), no. 1-3, 71–81. Special volume in honor of R. H. Bing (1914–1986). MR 872479, DOI 10.1016/0166-8641(86)90050-7
- R. J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989), no. 2, 173–184. MR 1020279, DOI 10.1016/S0166-8641(89)80006-9
- Robert J. Daverman, Manifolds with finite first homology as codimension $2$ fibrators, Proc. Amer. Math. Soc. 113 (1991), no. 2, 471–477. MR 1086581, DOI 10.1090/S0002-9939-1991-1086581-0
- Robert J. Daverman, $3$-manifolds with geometric structure and approximate fibrations, Indiana Univ. Math. J. 40 (1991), no. 4, 1451–1469. MR 1142723, DOI 10.1512/iumj.1991.40.40065
- R. J. Daverman, Hyper-Hopfian groups and approximate fibrations, Compositio Math. 86 (1993), no. 2, 159–176. MR 1214455
- R. J. Daverman and J. J. Walsh, Decompositions into codimension-two manifolds, Trans. Amer. Math. Soc. 288 (1985), no. 1, 273–291. MR 773061, DOI 10.1090/S0002-9947-1985-0773061-4
- Charles H. Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966), 187–198. MR 198462, DOI 10.2307/2373054
- Young Ho Im, Products of surfaces that induce approximate fibrations, Houston J. Math. 21 (1995), no. 2, 339–348. MR 1342414
- R. C. Kirby and L. C. Siebenmann, Normal bundles for codimension $2$ locally flat imbeddings, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 310–324. MR 0400237
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744, DOI 10.1007/978-3-642-81735-9
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Bibliographic Information
- R. J. Daverman
- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300
- Email: daverman@novell.math.utk.edu
- Received by editor(s): May 24, 1997
- Additional Notes: This research was supported in part by NSF Grant DMS-9401086.
- Communicated by: Ralph Cohen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 881-888
- MSC (1991): Primary 55R65, 57N15, 57N10; Secondary 57S37, 57N55
- DOI: https://doi.org/10.1090/S0002-9939-99-05192-8
- MathSciNet review: 1646311