On the number of solutions of an algebraic equation on the curve $y = e^x + \sin x, x > 0$, and a consequence for o-minimal structures
HTML articles powered by AMS MathViewer
- by Janusz Gwoździewicz, Krzysztof Kurdyka and Adam Parusiński
- Proc. Amer. Math. Soc. 127 (1999), 1057-1064
- DOI: https://doi.org/10.1090/S0002-9939-99-04672-9
- PDF | Request permission
Abstract:
We prove that every polynomial $P(x,y)$ of degree $d$ has at most $2(d+2)^{12}$ zeros on the curve $y=e^{x}+\sin (x),\quad x>0$. As a consequence we deduce that the existence of a uniform bound for the number of zeros of polynomials of a fixed degree on an analytic curve does not imply that this curve belongs to an o-minimal structure.References
- B. Benedetti, J. J. Risler, Real algebraic and semi–algebraic sets, Hermann, Paris, 1990.
- L. van den Dries, O-minimal structures, in Logic: from foundation to Applications, eds; Hodges et al., Oxford University Press.
- Lou van den Dries, Angus Macintyre, and David Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1994), no. 1, 183–205. MR 1289495, DOI 10.2307/2118545
- Lou van den Dries and Chris Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), no. 2, 497–540. MR 1404337, DOI 10.1215/S0012-7094-96-08416-1
- A. Khovansky, On the class of systems of transcendental equations, Soviet Mathematics Doklady 22 (1980), 762–765.
- A. Khovansky, Fewnomials, vol. 88, Translations of Math. Monographs AMS, 1991.
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- A. Wilkie, Model completness results for expansions of the ordered field of reals by restricted Pffafian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094.
Bibliographic Information
- Janusz Gwoździewicz
- Affiliation: Department of Mathematics, Technical University, Al. 1000 LPP 7, 25–314 Kielce, Poland
- Email: matjg@eden.tu.kielce.pl
- Krzysztof Kurdyka
- Affiliation: Laboratoire de Mathématiques, Université de Savoie, Campus Scientifique 73 376 Le Bourget–du–Lac Cedex, France and Instytut Matematyki, Uniwersytet Jagielloński, ul. Reymonta 4 30–059 Kraków, Poland
- Email: Krzysztof.Kurdyka@univ-savoie.fr
- Adam Parusiński
- Affiliation: Département de Mathématiques, Université d’Angers, 2, bd Lavoisier, 49045 Angers cedex 01, France
- Email: parus@tonton.univ-angers.fr
- Received by editor(s): July 15, 1997
- Communicated by: Steven R. Bell
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 1057-1064
- MSC (1991): Primary 32B20, 32C05, 14P15; Secondary 26E05, 03C99
- DOI: https://doi.org/10.1090/S0002-9939-99-04672-9
- MathSciNet review: 1476134