Stable constant mean curvature surfaces with circular boundary
HTML articles powered by AMS MathViewer
- by Luis J. Alías, Rafael López and Bennett Palmer
- Proc. Amer. Math. Soc. 127 (1999), 1195-1200
- DOI: https://doi.org/10.1090/S0002-9939-99-04950-3
- PDF | Request permission
Abstract:
In this paper we study stable constant mean curvature surfaces in the Euclidean space $\mathbf {R}^3$ with circular boundary. We show that in the case of genus zero, the only such surfaces are the spherical caps and the flat discs. We also extend this result to the case of surfaces in the other space forms, namely the sphere $\mathbf {S}^3$ and the hyperbolic space $\mathbf {H}^3$.References
- Hiroshi Mori, On surfaces of right helicoid type in $H^{3}$, Bol. Soc. Brasil. Mat. 13 (1982), no. 2, 57–62. MR 735120, DOI 10.1007/BF02584676
- Ricardo Earp, Fabiano Brito, William H. Meeks III, and Harold Rosenberg, Structure theorems for constant mean curvature surfaces bounded by a planar curve, Indiana Univ. Math. J. 40 (1991), no. 1, 333–343. MR 1101235, DOI 10.1512/iumj.1991.40.40017
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Nicolaos Kapouleas, Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2) 131 (1990), no. 2, 239–330. MR 1043269, DOI 10.2307/1971494
- Miyuki Koiso, Symmetry of hypersurfaces of constant mean curvature with symmetric boundary, Math. Z. 191 (1986), no. 4, 567–574. MR 832814, DOI 10.1007/BF01162346
- Miyuki Koiso, A generalization of Steiner symmetrization for immersed surfaces and its applications, Manuscripta Math. 87 (1995), no. 3, 311–325. MR 1340350, DOI 10.1007/BF02570477
- Rafael López and Sebastián Montiel, Constant mean curvature discs with bounded area, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1555–1558. MR 1286001, DOI 10.1090/S0002-9939-1995-1286001-0
- Rafael López and Sebastián Montiel, Constant mean curvature surfaces with planar boundary, Duke Math. J. 85 (1996), no. 3, 583–604. MR 1422358, DOI 10.1215/S0012-7094-96-08522-1
Bibliographic Information
- Luis J. Alías
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
- Email: ljalias@fcu.um.es
- Rafael López
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain
- ORCID: 0000-0003-3108-7009
- Email: rcamino@ugr.es
- Bennett Palmer
- Affiliation: Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, England
- Email: bennett.palmer@durham.ac.uk
- Received by editor(s): July 24, 1997
- Additional Notes: The first author was partially supported by DGICYT Grant No. PB94-0750-C02-02 and Consejería de Educación y Cultura CARM Grant No. PB/5/FS/97, Programa Séneca (PRIDTYC)
The second author was partially supported by DGICYT Grant No PB94-0796.
The third author was supported by a DGICYT Grant No. SAB95-0494. - Communicated by: Peter Li
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 1195-1200
- MSC (1991): Primary 53A10; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9939-99-04950-3
- MathSciNet review: 1618705