The maximal ideal space of $H^{\infty }(\mathbb D)$ with respect to the Hadamard product
HTML articles powered by AMS MathViewer
- by Hermann Render
- Proc. Amer. Math. Soc. 127 (1999), 1409-1411
- DOI: https://doi.org/10.1090/S0002-9939-99-04697-3
- Published electronically: January 29, 1999
- PDF | Request permission
Abstract:
It is shown that the space of all regular maximal ideals in the Banach algebra $H^{\infty }(\mathbb {D} )$ with respect to the Hadamard product is isomorphic to $\mathbb {N} _{0}.$ The multiplicative functionals are exactly the evaluations at the $n$-th Taylor coefficient. It is a consequence that for a given function $f(z) =\sum _{n=0}^{\infty }a_{n} z^{n}$ in $H^{\infty }(\mathbb {D} )$ and for a function $F(z)$ holomorphic in a neighborhood $U$ of $0$ with $F(0) =0$ and $a_{n} \in U$ for all $n \in \mathbb {N}_{0}$ the function $g(z) =\sum _{n=0}^{\infty }F(a_{n} ) z^{n}$ is in $H^{\infty }(\mathbb {D} ) .$References
- R. M. Brooks, A ring of analytic functions, Studia Math. 24 (1964), 191–210. MR 172137, DOI 10.4064/sm-24-2-191-210
- R. M. Brooks, A ring of analytic functions. II, Studia Math. 39 (1971), 199–208. MR 305079, DOI 10.4064/sm-39-2-199-208
- James Caveny, Bounded Hadamard products of $H^{p}$ functions, Duke Math. J. 33 (1966), 389–394. MR 193245
- Helmut Goldmann, Uniform Fréchet algebras, North-Holland Mathematics Studies, vol. 162, North-Holland Publishing Co., Amsterdam, 1990. MR 1049384
- Edmund Landau and Dieter Gaier, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, 3rd ed., Springer-Verlag, Berlin, 1986 (German). MR 869998, DOI 10.1007/978-3-642-71438-2
- Hermann Render and Andreas Sauer, Algebras of holomorphic functions with Hadamard multiplication, Studia Math. 118 (1996), no. 1, 77–100. MR 1373626, DOI 10.4064/sm-118-1-77-100
Bibliographic Information
- Hermann Render
- Affiliation: Universität Duisburg, Fachbereich Mathematik, Lotharstr. 65, D-47057 Duisburg, Federal Republic of Germany
- MR Author ID: 268351
- Email: render@math.uni-duisburg.de
- Received by editor(s): March 27, 1997
- Received by editor(s) in revised form: August 19, 1997
- Published electronically: January 29, 1999
- Communicated by: Albert Baernstein II
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 1409-1411
- MSC (1991): Primary 46J15; Secondary 30B10
- DOI: https://doi.org/10.1090/S0002-9939-99-04697-3
- MathSciNet review: 1476388