FINITE-DIMENSIONAL RIGHT IDEALS IN SOME ALGEBRAS ASSOCIATED WITH A LOCALLY COMPACT GROUP

M. FILALI

(Communicated by Palle E. T. Jorgensen)

Abstract. Let \(G \) be a discrete group, a commutative discrete cancellative semigroup or a locally compact abelian group. Let \(UC(G) \) be the space of bounded, uniformly continuous, complex-valued functions on \(G \). With an Arens-type product, the conjugate \(UC(G)^* \) becomes a Banach algebra. We prove, that unlike left ideals, finite-dimensional right ideals exist in \(UC(G)^* \) if and only if \(G \) is compact.

INTRODUCTION AND PRELIMINARIES

Let \(G \) be a locally compact group, \(C(G) \) the space of bounded, continuous, complex-valued functions on \(G \), and \(UC(G) \) the subspace of \(C(G) \) which consists of those functions which are left uniformly continuous, i.e.,

\[
UC(G) = \{ f \in C(G) : s \mapsto f_s : G \to C(G) \text{ is norm continuous} \},
\]

where \(f_s \) is the left translate of \(f \) by \(s \) defined by \(f_s(t) = f(st) \) for all \(t \in G \). Then \(UC(G)^* \) is a Banach algebra under the product

\[
(\mu \nu)(f) = \mu(f\nu) \quad \text{for all} \quad f \in UC(G), \quad \text{where} \quad f\nu(s) = \nu(f_s) \quad \text{for all} \quad s \in G.
\]

In [7], we have dealt with a number of algebras including \(UC(G)^* \), and we have determined all the finite-dimensional left ideals of these algebras. We then deduced that this type of ideals exists in \(UC(G)^* \) if and only if \(G \) is amenable, i.e., there is \(\mu \in UC(G)^* \) such that \(\mu \neq 0 \) and \(\mu(f_s) = \mu(f) \) for all \(f \in UC(G) \) and \(s \in G \). As already remarked in [1, Section 4] and [7], the finite-dimensional right ideals are determined in the same way when the two Arens products coincide in the algebra; for example, in \(WAP(G)^* \), where \(WAP(G) \) is the space of weakly almost periodic functions (see [2, Section 4.2]), or in the group algebra \(L^1(G) \) and the measure algebra \(M(G) \) when \(G \) is compact. However, in [1, Section 4], we have given a class of locally compact abelian groups for which the non-trivial right ideals in \(UC(G)^* \) are all of infinite dimension. In this paper, we let \(G \) be either a discrete group, a commutative discrete cancellative semigroup or a locally compact abelian group, and we show that, in fact, finite-dimensional right ideals exist in \(UC(G)^* \) if and only if \(G \) is compact. This is achieved by using the algebraic structure of...
the uniform compactification UG of G. We recall that UG may be regarded as the spectrum of $UC(G)$ equipped with the relative weak*-topology inherited from $UC(G)^*$. By the spectrum of $UC(G)$, we mean the set of all nonzero multiplicative elements x of $UC(G)^*$, i.e., $x(fg) = x(f)x(g)$ for all $f, g \in UC(G)$. It is known that the restriction of the operation of $UC(G)^*$ to UG makes UG into a compact right topological semigroup. This means that the operation is defined for x and y in UG by

$$xy(f) = x(f)y$$

for all $f \in UC(G)$.

This operation is of course associative and is such that the mappings $x \mapsto xy$ and $x \mapsto sx$ from UG into UG are continuous for each $y \in UG$ and $s \in G$. Note that when G is discrete, the space $UC(G)$ and the space of all bounded complex-valued functions on G (usually denoted by $\ell^\infty(G)$) are identical, and so UG and the Stone-Čech compactification βG of G are identical.

Recall that the Gelfand mapping $f \mapsto \tilde{f}$, where $\tilde{f}(x) = x(f)$ for $x \in UG$ and $f \in UC(G)$, identifies $UC(G)$ with $C(UG)$ (see [2, Theorem 3.1.7]). Hence the Banach spaces $UC(G)^*$ and $C(UG)^*$ may also be identified by the mapping $\mu \mapsto \tilde{\mu}$, where $\tilde{\mu}(f) = \mu(f)$ for $\mu \in UC(G)^*$ and $f \in UC(G)$.

The closure in UG of a subset A of UG is denoted by \overline{A}. If A is a subset of G, then \overline{A}^* will denote $\overline{A} \setminus A$. For more information on UG, see [2] and [4].

The author wishes to thank the referee for the corrections to the English expressions, and Markku Kuukasjärvi for help with T\LaTeX.

Right ideals in $UC(G)^*$

We begin with some results concerning the algebraic structure of UG. The correspondence between UG and $UC(G)^*$ enables us then to prove our main theorem.

Definition 1. A subset V of G is said to be **sparse** if it is countably infinite and $sV \cap tV$ is finite whenever s and t are distinct elements of G.

These sets exist and were used in [3], [5] and [6] to show the following results.

Theorem 1. Let G be either a discrete group or a commutative cancellative discrete semigroup. Let V be a sparse subset of G. Then

1. each $x \in V^*$ satisfies $yx \neq zx$ whenever $y \neq z$ in βG, i.e., x is right cancellative in βG; and
2. $(\beta G)x_1 \cap (\beta G)x_2 = \emptyset$ whenever x_1 and x_2 are distinct elements in V^*.

As the theorem below shows, these results are also valid in UG when G is a non-compact, locally compact abelian group. For the proof, we need to recall the following facts used in [4] to transfer properties from βG when G is discrete to UG when G is not discrete. Write, by [9, Theorem 24.30], $G = \mathbb{R}^n \times H$, where $n \in \mathbb{N}$ and H is a locally compact abelian group containing a compact open subgroup K. Let $\phi : H \to H/K$ be the quotient mapping, and $\psi : \mathbb{Z}^n \times H \to \mathbb{Z}^n \times H/K$ be the mapping defined by $\psi(m, h) = (m, \phi(h))$. By [2, Theorem 4.4.4], let $\psi : U(\mathbb{Z}^n \times H) \to \beta(\mathbb{Z}^n \times H/K)$ be the continuous homomorphism which extends ψ to $U(\mathbb{Z}^n \times H)$. We recall also from [4] that $U(\mathbb{Z}^n \times H) = \overline{\mathbb{Z}^n \times H}$ (the closure is taken in UG), and that each x in UG can be written as $x = (s, e)\bar{x}$ where $s \in [0, 1]^n$, e is the identity in H and $\bar{x} \in U(\mathbb{Z}^n \times H)$.

Lemma 1. Let y and z be elements of $U(\mathbb{Z}^n \times H)$, and suppose that $(k,e) y \neq z$ for all $k \in \{0,1\}^n$. Then $(s,e) y \neq z$ in $U(\mathbb{R}^n \times H)$ for all $s \in [0,1]^n$.

Proof. The case of $n = 0$ is trivial, so we start with $n = 1$, and suppose that $y \neq z$ and $(1,e) y \neq z$. We pick a function $f \in UC(\mathbb{Z} \times H)$ such that

$$\hat{f}(y) = \hat{f}((1,e) y) = 0 \quad \text{and} \quad \hat{f}(z) = 1.$$

We extend f to a function g which is defined on $\mathbb{R} \times H$ in the following way. We write each $u \in \mathbb{R}$ as $u = m + s$, where $m \in \mathbb{Z}$ and $s \in [0,1]$, and let

$$g(u,h) = \begin{cases} f(m + s, h) & \text{for all } (u,h) \in \mathbb{R} \times H.
\end{cases}$$

This means that, for each fixed $h \in H$, the function g_h defined on \mathbb{R} by $g_h(u) = g(u,h)$ is linear in the interval $[m,m+1]$, $m \in \mathbb{Z}$. Then it is not difficult to verify that the function g is uniformly continuous on $\mathbb{R} \times H$. Let \tilde{g} be the continuous extension of g to $U(\mathbb{R} \times H)$, and let (y_α, h_α) be a net in $(\mathbb{Z} \times H)$ which converges to y in $U(\mathbb{R} \times H)$. Then we have, for each $s \in [0,1],

$$\tilde{g}(s,e) y = \lim_{\alpha} g(y_\alpha + s, h_\alpha)$$

$$= \lim_{\alpha} (f(y_\alpha + 1, h_\alpha) - f(y_\alpha, h_\alpha)) s + \lim_{\alpha} f(y_\alpha, h_\alpha) = 0,$$

whereas it is clear that $\tilde{g}(z) = \hat{f}(z) = 1$. Thus $(s,e) y \neq z$.

We come now to the general case. Suppose that $(k,e) y \neq z$ for all $k \in \{0,1\}^n$, and let $s = (s_1, s_2, ..., s_n) \in [0,1]^n$. Then the proof given for the case $n = 1$ implies that $(s_1, k,e) y \neq z$ for all $k \in \{0,1\}^{n-1}$ and $s_1 \in [0,1]$. Then we consider $\mathbb{R} \times H$ instead of H. The same argument shows again that $(s_1, s_2, k,e) y \neq z$ for all $k \in \{0,1\}^{n-2}$. Inductively, this leads to the desired result.

\[\square\]

Theorem 2. Let G be a non-compact, locally compact abelian group. Then there are points x_1 and x_2 in $UG \setminus G$ such that

1. x_1 and x_2 are right cancellative in UG, and
2. $(UG) x_1 \cap (UG) x_2 = \emptyset$.

Proof. Recall that $G = \mathbb{R}^n \times H$. Let V be a sparse subset of $\mathbb{Z}^n \times H/K$. Then, by Theorem 1, each point of V^* is right cancellative in $\beta(\mathbb{Z}^n \times H/K)$. From [4, Theorem 5.4], it follows that every point of $(\tilde{\psi})^{-1}(V^*)$ belongs to $UG \setminus G$ and is right cancellative in UG. So Statement (1) follows.

For Statement (2), let a_1 and a_2 be two distinct elements in V^*, and let x_1 and x_2 be in $U(\mathbb{Z}^n \times H)$ such that $\tilde{\psi}(x_1) = a_1$ and $\tilde{\psi}(x_2) = a_2$. Let y and z be arbitrary elements in UG. We claim that $yx_1 \neq zx_2$. We write $y = (s,e) \tilde{y}$ and $z = (t,e) \tilde{z}$, where $s, t \in [0,1]^n$ and $\tilde{y}, \tilde{z} \in U(\mathbb{Z}^n \times H)$. Then, by Theorem 1,

$$\beta(\mathbb{Z}^n \times H/K) a_1 \cap \beta(\mathbb{Z}^n \times H/K) a_2 = \emptyset.$$

It follows that, for all $k \in \mathbb{Z}^n$,

$$\tilde{\psi}((k,e) \tilde{y}) \tilde{\psi}(x_1) = \tilde{\psi}((k,e) \tilde{y}) a_1 \neq \tilde{\psi}(\tilde{z}) a_2 = \tilde{\psi}(\tilde{z}) \tilde{\psi}(x_2).$$

Since $\tilde{\psi}$ is a homomorphism, this implies that

$$\tilde{\psi}((k,e) \tilde{y} x_1) \neq \tilde{\psi}(\tilde{z} x_2)$$
Lemma 2. Let UC.

Then it is easy to check that

If one takes the corresponding $\tilde{\mu}$ extended in the usual way to an element of $UC(G)^\ast$. The lemma above leads to the desired conclusion.

We come now to the correspondence between UG and $UC(G)^\ast$. We need to recall the following definitions.

Definition 2. The total variation of an element μ of $UC(G)^\ast$ is denoted by $|\mu|$ and defined first for $f \in UC(G)$, $f \geq 0$ by

$$|\mu|(f) = \sup\{|\mu(h)| : h \in UC(G) \text{ and } |h| \leq f\},$$

then extended in the usual way to an element of $UC(G)^\ast$.

The support of an element μ of $UC(G)^\ast (= C(UG)^\ast)$ is denoted by $\text{supp}(\mu)$ and defined by

$$\text{supp}(\mu) = \{x \in UG : |\mu|(f) \neq 0 \text{ whenever } f \in UC(G), f \geq 0 \text{ and } \tilde{f}(x) \neq 0\}.$$

Remark. If one takes the corresponding $\tilde{\mu}$ in $C(UG)^\ast$, regards by the Riesz representation theorem (see, e.g., [9, Theorem 14.10]), $\tilde{\mu}$ as a bounded, regular, Borel measure on UG, and defines (as usual) the support of $\tilde{\mu}$ by

$$\text{Supp}(\tilde{\mu}) = UG \setminus \bigcup\{U : U \text{ open in } UG \text{ and } |\tilde{\mu}|U = 0\},$$

then it is easy to check that $\text{supp}(\mu) = \text{Supp}(\tilde{\mu})$.

Lemma 2. Let x be a right cancellative element in UG, and let μ be a nonzero element of $UC(G)^\ast$. Then

1. $C = \{f_x : f \in UC(G)\}$ is norm-dense in $UC(G)$ (and so $\mu x \neq 0$),
2. $|\mu x| = |\mu|x$,
3. $\text{supp}(\mu x) = \text{supp}(\mu)x$.

Proof. Clearly, C is a subalgebra of $UC(G)$ since x is multiplicative. Furthermore, since x is right cancellative, we have $yx \neq zx$ in UG whenever $y \neq z$ in UG. So there is $f \in UC(G)$ such that $\tilde{f}(yx) \neq \tilde{f}(zx)$. It follows that

$$\tilde{f}_x(y) = y(f_x) = (yx)(f) = \tilde{f}(yx) \neq \tilde{f}(zx) = (zx)(f) = z(f_x) = \tilde{f}_x(z).$$

Therefore $\tilde{C} = \{\tilde{f}_x : f \in UC(G)\}$ separates the points in UG, which implies that \tilde{C} is norm-dense in $C(UG)$. Equivalently, C is norm-dense in $UC(G)$. This implies that for a nonzero μ in $UC(G)^\ast$, there must be a function $f \in UC(G)$ with $\mu x(f) = \mu(f_x) \neq 0$, and so Statement (1) follows.

For simplicity of notation we assume now that $\|\mu\| = 1$. It is known and not difficult to check that $|\mu\nu| \leq |\mu||\nu|$ for all μ and ν in $UC(G)^\ast$, in particular $|\mu x| \leq |\mu|x$. So we only need to show that $|\mu|x \geq |\mu|x$. Let f be a nonnegative function in $UC(G)$, and let $\epsilon > 0$ be fixed. Then there exists $h \in UC(G)$ such that $|h| \leq f_x$ and $|\mu(h)| \geq |\mu|(f_x) - \frac{\epsilon}{2}$. Since $\{g_x : g \in UC(G)\}$ is norm-dense in $UC(G)$, we pick $g \in UC(G)$ such that $\|g_x - h\| < \frac{\epsilon}{2}$, and so

$$|\mu g_x| = |\mu(g_x)| \geq |\mu|(h) - \frac{\epsilon}{2} \geq |\mu|(f_x) - \epsilon.$$
Then \(f \) with \(\tilde{\mu} \)ative, i.e., \(\tilde{\mu} \)ingly, \(UG \), we define the following function on \(y \)

\[
\tilde{g}'(x) = \begin{cases}
(\tilde{f}(y) + \frac{\varepsilon}{2}) \tilde{\mu}(y), & \text{if } |\tilde{f}(y)| \geq \tilde{f}(y) + \frac{\varepsilon}{2} \\
\tilde{g}(y), & \text{if } |\tilde{g}(y)| < \tilde{f}(y) + \frac{\varepsilon}{2}.
\end{cases}
\]

Then \(\tilde{g}' \) is continuous on \(UG \), \(|g'| \leq f + \frac{\varepsilon}{2} \), and

\[
|\tilde{g}(sx)| = |g_x(s)| < |h(s)| + \frac{\varepsilon}{2} \leq f_x(s) + \frac{\varepsilon}{2} = \tilde{f}(sx) + \frac{\varepsilon}{2} \text{ for all } s \in G.
\]

Therefore \(g'_x(s) = \tilde{g}'(sx) = \tilde{g}(sx) = g_x(s) \) for all \(s \) in \(G \), and so the functions \(g'_x \) and \(g_x \) are equal. It follows that

\[
|\mu x(f + \varepsilon)| \geq |\mu x(g')| = |\mu(g'_x)| = |\mu(g_x)| \geq |\mu(f_x)| - \varepsilon = |\mu(x(f)) - \varepsilon|.
\]

Thus \(|\mu x(f)| \geq |\mu x(f)| \), which completes the proof of Statement (2).

Because of Statement (2) we may assume in this last statement that \(\mu \) is nonnegative, i.e., \(\mu = |\mu| \). Let \(y \in supp(\mu) x \), and let \(f \) be a nonnegative function in \(UC(G) \) with \(\tilde{f}(y) \neq 0 \). We need to verify that \(\mu x(f) \neq 0 \). Write \(y = z x \) with \(z \in supp(\mu) \). Then \(f_x \) is clearly nonnegative and \(\tilde{f}_x(z) = z(f_x) = (z x)(f) = \tilde{f}(z x) = \tilde{f}(y) \neq 0 \). Since \(z \in supp(\mu) \), this implies that \((\mu x)(f) = \mu(f_x) = |\mu|(f_x) \neq 0 \), and so \(y \in supp(\mu x) \).

Conversely, we regard (by the Riesz representation theorem) \(\tilde{\mu} \) as a bounded, regular, Borel measure on \(UG \), and let \(y \) be a point not in \(supp(\mu) x \). Then \(supp(\mu) x \) is compact since it is the continuous image of a compact set, and so it is closed. Therefore there is \(f \in UC(G) \) such that \(\tilde{f}(y) \neq 0 \) and \(\tilde{f}(supp(\mu) x) = \{0\} \). Accordingly,

\[
\mu x(f) = \mu(f_x) = \tilde{\mu}(\tilde{f}_x) = \int_{UG} \tilde{f}_x(z) d\tilde{\mu}(z) = \int_{supp(\mu)} \tilde{f}_x(z) d\tilde{\mu}(z)
\]

\[
= \left(\int_{supp(\mu)} \tilde{f}(z x) d\tilde{\mu}(z) \right) = \int_{supp(\mu)} 0 d\tilde{\mu}(z) = 0.
\]

This means that \(y \) does not belong to \(supp(\mu x) \), and so the proof is complete.

We are now ready to give the main result of the paper.

Theorem 3. Let \(G \) be either a discrete group, a commutative cancellative discrete semigroup, or a locally compact abelian group. Then finite-dimensional right ideals exist in \(UC(G)^* \) if and only if \(G \) is compact (and so \(G \) is finite in the first two cases).

Proof. The sufficiency is straightforward. In fact, if \(G \) is compact then \(UC(G) = C(G) \), so \(UC(G)^* = M(G) \) (the algebra of bounded, regular, Borel measures on \(G \)), and so the finite-dimensional right ideals are determined in a similar fashion as the left ones, see [7].

For the necessity we suppose that \(G \) is not compact. Let \(R \) be a right ideal of \(UC(G)^* \), and let \(\mu \) be a nonzero element of \(R \). By Theorems 1 and 2 we can take two elements \(x_1 \) and \(x_2 \) in \(UG \setminus G \) which are right cancellative in \(UG \) and with disjoint principal left ideals, i.e., \((UG) x_1 \cap (UG) x_2 = \emptyset \). Then, by Lemma 2, \(\mu x_1 \)
and μx_2 are nonzero elements of R. Furthermore,
\[\text{supp}(\mu x_1) \subseteq \text{supp}(\mu) x_1 \subseteq (UG)x_1 \quad \text{and} \quad \text{supp}(\mu x_2) \subseteq \text{supp}(\mu) x_2 \subseteq (UG)x_2.\]
Accordingly, $\text{supp}(\mu x_1) \cap \text{supp}(\mu x_2) = \emptyset$. Suppose now that R is of dimension n, say. Then, for some complex scalars $a_1, a_2, ..., a_n$, we must have
\[a_1 \mu x_1 + a_2 \mu x_2 + ... + a_n \mu x_1 x_2^{n-1} = 0.\]
Such an identity is clearly true if and only if $a_1 = a_2 = ... = a_n = 0$, and so the proof is complete. \hfill \Box

\textbf{Remark.} Let G be a nondiscrete, locally compact, abelian group. As it is well known, $L^\infty(G)^*$ is a Banach algebra with the (first) Arens product. The product of μ and ν in $L^\infty(G)^*$ may be described by $(\mu \circ \nu)(f) = \mu(f_\nu)$, where $f_\nu(\phi) = \nu(\hat{\phi} * f)$ for $f \in L^\infty(G)$ and $\phi \in L^1(G)$ and where $\hat{\phi}(s) = \phi(s^{-1})$ for $s \in G$. In this algebra, we can only answer partially the question of whether finite-dimensional right ideals exist. In fact, let R be a right ideal, and suppose that $\mu(f) \neq 0$ for some μ in R and $f \in UC(G)$. It can be checked directly that the restriction of the product of $L^\infty(G)^*$ to $UC(G)$ coincides with that of $UC(G)^*$, i.e., $\mu \circ \nu(f) = \mu \nu(f)$ for all $f \in UC(G)$. Accordingly, we may regard R as a nonzero right ideal of $UC(G)^*$, and so Theorem 3 says that R cannot be of finite dimension unless G is compact. However, it may happen that $\mu(f) = 0$ for all $f \in UC(G)$ and for all $\mu \in R$. Such elements satisfy $L^\infty(G)^* \circ \mu = \{0\}$, and they exist because $L^\infty(G) \setminus UC(G)$ is even nonseparable, see [8]. We still do not know whether in this situation $\mu \circ L^\infty(G)^*$ can be of finite dimension.

\textbf{References}

\textbf{Department of Mathematical Sciences, University of Oulu, SF 90570 Finland}

\textit{E-mail address: mfilali@cc.oulu.fi}