Norm of convolution by operator-valued functions on free groups
HTML articles powered by AMS MathViewer
- by Artur Buchholz
- Proc. Amer. Math. Soc. 127 (1999), 1671-1682
- DOI: https://doi.org/10.1090/S0002-9939-99-04660-2
- Published electronically: February 4, 1999
- PDF | Request permission
Abstract:
We present a connection between the Leinert sets and the non-crossing two-partitions and we use this connection to give a simple proof of the free Khintchine inequality in discrete non-commutative $L_p$-spaces. Moreover we extend the inequality of Haagerup-Pisier, \[ \left \| \sum _{g\in S} \lambda (g)\otimes a_g\right \|_{C_\lambda ^*(F_n)\otimes A} \le 2\max \left \{\left \| \sum _{g\in S} a_g^*a_g\right \|^{\frac 12}, \left \|\sum _{g\in S} a_g a_g^*\right \|^{\frac 12}\right \}, \] where $\lambda$ is the left regular representation of the group $F_n$, $a_g$ are elements of the $C^*$-algebra $A$, and $S$ is the set of the words with length one, to the set $S$ of the words with arbitrary fixed length.References
- Charles A. Akemann and Phillip A. Ostrand, Computing norms in group $C^*$-algebras, Amer. J. Math. 98 (1976), no. 4, 1015–1047. MR 442698, DOI 10.2307/2374039
- Marek Bożejko, On $\Lambda (p)$ sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. 51 (1975), 407–412. MR 390658, DOI 10.1090/S0002-9939-1975-0390658-3
- Uffe Haagerup, An example of a nonnuclear $C^{\ast }$-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279–293. MR 520930, DOI 10.1007/BF01410082
- Uffe Haagerup and Gilles Pisier, Bounded linear operators between $C^*$-algebras, Duke Math. J. 71 (1993), no. 3, 889–925. MR 1240608, DOI 10.1215/S0012-7094-93-07134-7
- G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), no. 4, 333–350 (French). MR 309747, DOI 10.1016/0012-365X(72)90041-6
- R. A. Kunze, $L_{p}$ Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc. 89 (1958), 519–540. MR 100235, DOI 10.1090/S0002-9947-1958-0100235-1
- Michael Leinert, Faltungsoperatoren auf gewissen diskreten Gruppen, Studia Math. 52 (1974), 149–158 (German). MR 355480, DOI 10.4064/sm-52-2-149-158
- Michael Leinert, Abschätzung von Normen gewisser Matrizen und eine Anwendung, Math. Ann. 240 (1979), no. 1, 13–19 (German). MR 523997, DOI 10.1007/BF01428295
- Gilles Pisier, Multipliers and lacunary sets in non-amenable groups, Amer. J. Math. 117 (1995), no. 2, 337–376. MR 1323679, DOI 10.2307/2374918
- Gilles Pisier, The operator Hilbert space $\textrm {OH}$, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103. MR 1342022, DOI 10.1090/memo/0585
- Massimo A. Picardello and Tadeusz Pytlik, Norms of free operators, Proc. Amer. Math. Soc. 104 (1988), no. 1, 257–261. MR 958078, DOI 10.1090/S0002-9939-1988-0958078-7
- Roland Speicher, A new example of “independence” and “white noise”, Probab. Theory Related Fields 84 (1990), no. 2, 141–159. MR 1030725, DOI 10.1007/BF01197843
- Dan Voiculescu, Symmetries of some reduced free product $C^\ast$-algebras, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 556–588. MR 799593, DOI 10.1007/BFb0074909
- D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253, DOI 10.1090/crmm/001
Bibliographic Information
- Artur Buchholz
- Affiliation: Institute of Mathematics, University of Wroclaw, Wroclaw pl. Grunwaldzki 2/4, Poland
- Email: buchholz@math.uni.wroc.pl
- Received by editor(s): September 23, 1996
- Received by editor(s) in revised form: September 3, 1997
- Published electronically: February 4, 1999
- Additional Notes: This paper is part of the author’s Master Thesis under Prof. M. Bożejko, supported by KBN grant 2P03A05108
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 1671-1682
- MSC (1991): Primary 43A30; Secondary 43A65
- DOI: https://doi.org/10.1090/S0002-9939-99-04660-2
- MathSciNet review: 1476122