Remarkable asymmetric random walks
HTML articles powered by AMS MathViewer
- by L. Mattner
- Proc. Amer. Math. Soc. 127 (1999), 1847-1854
- DOI: https://doi.org/10.1090/S0002-9939-99-04753-X
- Published electronically: February 17, 1999
- PDF | Request permission
Abstract:
There exists an asymmetric probability measure $P$ on the real line with $P^{\ast n} (]0,\infty [) + (1/2) P^{\ast n} (\{0\}) = 1/2$ for every $n \in \mathbf {N}$. $P$ can be chosen absolutely continuous and $P$ can be chosen to be concentrated on the integers. In both cases, $P$ can be chosen to have moments of every order, but $P$ cannot be determined by its moments.References
- Donoghue, W.F. (1969). Distributions and Fourier Transforms. Academic, N.Y.
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. Translated from the Russian, annotated, and revised by K. L. Chung; With appendices by J. L. Doob and P. L. Hsu. MR 0233400
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- T. Edwin Prabakaran and B. Chandrasekar, Simultaneous equivariant estimation for location-scale models, J. Statist. Plann. Inference 40 (1994), no. 1, 51–59. MR 1278847, DOI 10.1016/0378-3758(94)90141-4
- Mattner, L. (1997). Acknowledgement of priority. Mathematical Methods of Statistics 6, 517.
- Mattner, L. (199?). Gurland’s Fourier inversion for distribution functions. (In preparation.)
- V. V. Petrov, Sums of independent random variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by A. A. Brown. MR 0388499, DOI 10.1007/978-3-642-65809-9
- Moshe Pollak, On equal distributions, Ann. Statist. 1 (1973), 180–182. MR 331582
- Ramachandran, B. (1997). Characteristic functions with some powers real–III. Statistics & Probability Letters 34, 33–36.
- Robert G. Staudte Jr. and Mahabanoo N. Tata, Complex roots of real characteristic functions, Proc. Amer. Math. Soc. 25 (1970), 238–246. MR 264732, DOI 10.1090/S0002-9939-1970-0264732-1
Bibliographic Information
- L. Mattner
- Affiliation: Universität Hamburg, Institut für Mathematische Stochastik, Bundesstr. 55, D–20146 Hamburg, Germany
- MR Author ID: 315405
- Email: mattner@math.uni-hamburg.de
- Received by editor(s): May 5, 1997
- Received by editor(s) in revised form: September 22, 1997
- Published electronically: February 17, 1999
- Communicated by: Stanley Sawyer
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 1847-1854
- MSC (1991): Primary 60J15, 60E10, 62E10, 62G05
- DOI: https://doi.org/10.1090/S0002-9939-99-04753-X
- MathSciNet review: 1487326