Accelerations of Riemannian quadratics
HTML articles powered by AMS MathViewer
- by Lyle Noakes
- Proc. Amer. Math. Soc. 127 (1999), 1827-1836
- DOI: https://doi.org/10.1090/S0002-9939-99-04809-1
- Published electronically: February 18, 1999
- PDF | Request permission
Abstract:
A Riemannian corner-cutting algorithm generalizing a classical construction for quadratics was previously shown by the author to produce a $C^1$ curve $p_\infty$ whose derivative is Lipschitz. The present paper takes the analysis of $p_\infty$ a step further by proving that it possesses left and right accelerations everywhere. Two-sided accelerations are shown to exist on the complement of a countable dense subset $D$ of the domain. The results are shown to be sharp in the following sense. For almost any scaled triple in Euclidean space there is a Riemannian perturbation of the Euclidean metric such that the two-sided accelerations of the resulting curve $p_\infty$ exist nowhere in $D$.References
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453
- Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine, Riemannian geometry, 2nd ed., Universitext, Springer-Verlag, Berlin, 1990. MR 1083149, DOI 10.1007/978-3-642-97242-3
- Raghavan Narasimhan, Analysis on real and complex manifolds, 2nd ed., Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0346855
- Georges de Rham, Sur quelques fonctions différentiables dont toutes les valeurs sont des valeurs critiques, Celebrazioni Archimedee del Sec. XX (Siracusa, 1961) Edizioni “Oderisi”, Gubbio, 1962, pp. 61–65 (French). MR 0151566
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Georges de Rham, Sur les courbes limites de polygones obtenus par trisection, Enseign. Math. (2) 5 (1959), 29–43 (French). MR 108796
- J. Lyle Noakes, Asymptotically smooth splines, Advances in computational mathematics (New Delhi, 1993) Ser. Approx. Decompos., vol. 4, World Sci. Publ., River Edge, NJ, 1994, pp. 131–137. MR 1338844
- —, A global algorithm for geodesics, to appear in Bull. Austral. Math. Soc. Series A.
- —, Riemannian quadratics, submitted to Proc. Third Chamonix Conference on Curves and Surfaces, A. Le Méhauté, C. Rabut and L. L. Schumaker (eds.) (1997), 319–328.
- H. von Koch, Sur une courbe continue sans tangente obtenue par une construction géométrique élémentaire, Arkiv. Mat. Astronomik Fysik 1 (1904), 681–702.
Bibliographic Information
- Lyle Noakes
- Affiliation: Department of Mathematics, The University of Western Australia, Nedlands, Western Australia 6907, Australia
- Email: lyle@maths.uwa.edu.au
- Received by editor(s): December 7, 1996
- Received by editor(s) in revised form: June 11, 1997
- Published electronically: February 18, 1999
- Communicated by: Christopher Croke
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 1827-1836
- MSC (1991): Primary 53B20, 53B99; Secondary 41A15, 41A29, 41A99
- DOI: https://doi.org/10.1090/S0002-9939-99-04809-1
- MathSciNet review: 1486744