On the eigenvalue ratio for vibrating strings
HTML articles powered by AMS MathViewer
- by Min-Jei Huang
- Proc. Amer. Math. Soc. 127 (1999), 1805-1813
- DOI: https://doi.org/10.1090/S0002-9939-99-05015-7
- Published electronically: February 17, 1999
- PDF | Request permission
Abstract:
For vibrating strings with concave densities or symmetric single-barrier densities, the ratio $\lambda _2/\lambda _1$ of the first two eigenvalues is minimized when the density is constant; while, for vibrating strings with symmetric single-well densities, the ratio $\lambda _2/\lambda _1$ is maximized when the density is constant.References
- Mark S. Ashbaugh and Rafael Benguria, On the ratio of the first two eigenvalues of Schrödinger operators with positive potentials, Differential equations and mathematical physics (Birmingham, Ala., 1986) Lecture Notes in Math., vol. 1285, Springer, Berlin, 1987, pp. 16–25. MR 921249, DOI 10.1007/BFb0080577
- Mark S. Ashbaugh and Rafael Benguria, Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials, Proc. Amer. Math. Soc. 105 (1989), no. 2, 419–424. MR 942630, DOI 10.1090/S0002-9939-1989-0942630-X
- Mark S. Ashbaugh and Rafael D. Benguria, Eigenvalue ratios for Sturm-Liouville operators, J. Differential Equations 103 (1993), no. 1, 205–219. MR 1218744, DOI 10.1006/jdeq.1993.1047
- R. D. Gentry and D. O. Banks, Bounds for functions of eigenvalues of vibrating systems, J. Math. Anal. Appl. 51 (1975), 100–128. MR 372312, DOI 10.1016/0022-247X(75)90144-4
- Joseph B. Keller, The minimum ratio of two eigenvalues, SIAM J. Appl. Math. 31 (1976), no. 3, 485–491. MR 422751, DOI 10.1137/0131042
- Richard Lavine, The eigenvalue gap for one-dimensional convex potentials, Proc. Amer. Math. Soc. 121 (1994), no. 3, 815–821. MR 1185270, DOI 10.1090/S0002-9939-1994-1185270-4
- T. J. Mahar and B. E. Willner, An extremal eigenvalue problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 517–529. MR 425244, DOI 10.1002/cpa.3160290505
Bibliographic Information
- Min-Jei Huang
- Affiliation: Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043
- Email: mjhuang@math.nthu.edu.tw
- Received by editor(s): September 19, 1997
- Published electronically: February 17, 1999
- Communicated by: Hal L. Smith
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 1805-1813
- MSC (1991): Primary 34L15
- DOI: https://doi.org/10.1090/S0002-9939-99-05015-7
- MathSciNet review: 1621941