Bimodules over nest algebras and Deddens’ theorem
HTML articles powered by AMS MathViewer
- by I. Todorov
- Proc. Amer. Math. Soc. 127 (1999), 1771-1780
- DOI: https://doi.org/10.1090/S0002-9939-99-05115-1
- Published electronically: February 11, 1999
- PDF | Request permission
Abstract:
We generalize Deddens’ theorem for nest algebras in the case of w*-closed nest algebras bimodules. For each such bimodule, we introduce a norm closed sub-bimodule of it, which corresponds to the radical of a nest algebra and describe it in a number of ways, generalizing known facts about nest algebras.References
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- James A. Deddens, Another description of nest algebras, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977) Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 77–86. MR 526534
- J. A. Erdos, On some ideals of nest algebras, Proc. London Math. Soc. (3) 44 (1982), no. 1, 143–160. MR 642797, DOI 10.1112/plms/s3-44.1.143
- J. A. Erdos, Operators of finite rank in nest algebras, J. London Math. Soc. 43 (1968), 391–397. MR 230156, DOI 10.1112/jlms/s1-43.1.391
- J. A. Erdos, Reflexivity for subspace maps and linear spaces of operators, Proc. London Math. Soc. (3) 52 (1986), no. 3, 582–600. MR 833651, DOI 10.1112/plms/s3-52.3.582
- J. A. Erdos and W. E. Longstaff, The convergence of triangular integrals of operators on Hilbert space, Indiana Univ. Math. J. 22 (1972/73), 929–938. MR 336403, DOI 10.1512/iumj.1973.22.22077
- J. A. Erdos and S. C. Power, Weakly closed ideals of nest algebras, J. Operator Theory 7 (1982), no. 2, 219–235. MR 658610
- Sotirios Karanasios, Triangular integration with respect to a nest algebra module, Indiana Univ. Math. J. 34 (1985), no. 2, 299–317. MR 783917, DOI 10.1512/iumj.1985.34.34018
- Richard I. Loebl and Paul S. Muhly, Analyticity and flows in von Neumann algebras, J. Functional Analysis 29 (1978), no. 2, 214–252. MR 504460, DOI 10.1016/0022-1236(78)90007-1
- D. I. Marculescu, Reflexivity of linear manifolds of operators, Doctoral thesis, University of London, 1984.
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81, DOI 10.1215/S0012-7094-39-00549-1
- J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. (3) 15 (1965), 61–83. MR 171174, DOI 10.1112/plms/s3-15.1.61
- A. N. Loginov and V. S. Šul′man, Hereditary and intermediate reflexivity of $W^*$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 6, 1260–1273, 1437 (Russian). MR 0405124
Bibliographic Information
- I. Todorov
- Affiliation: Department of Mathematics, University of Athens, Panepistemioupolis 15784, Athens, Greece
- Email: itodorov@atlas.uoa.gr
- Received by editor(s): September 16, 1997
- Published electronically: February 11, 1999
- Additional Notes: This work was supported by a grant of the Greek State Scholarship Foundation
- Communicated by: David R. Larson
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 1771-1780
- MSC (1991): Primary 47D15; Secondary 47D25
- DOI: https://doi.org/10.1090/S0002-9939-99-05115-1
- MathSciNet review: 1637440