Pseudo-Anosov homeomorphisms with quadratic expansion
HTML articles powered by AMS MathViewer
- by J. Franks and E. Rykken
- Proc. Amer. Math. Soc. 127 (1999), 2183-2192
- DOI: https://doi.org/10.1090/S0002-9939-99-04731-0
- Published electronically: February 17, 1999
- PDF | Request permission
Abstract:
We show that if $f: M \rightarrow M$ is a pseudo-Anosov homeomorphism on an orientable surface with oriented unstable manifolds and a quadratic expanding factor, then there is a hyperbolic toral automorphism on $\mathbb {T}^2$ and a map $h: M \rightarrow \mathbb {T}^2$ such that $h$ is a semi-conjugacy and $(M, h)$ is a branched covering space of $\mathbb {T}^2$. We also give another characterization of pseudo-Anosov homeomorphisms with quadratic expansion in terms of the kinds of Euclidean foliations they admit which are compatible with the affine structure associated to $f$.References
- Fathi, A. and Poénaru, V., Exposé 12: Theoremes d’unicit’e des diffeómorphismes pseudo-Anosov, Travaux de Thurston sur les Surfaces, Astérisque 66-7 Société Mathématique de France, Paris (1979).
- Fathi, A. and Shub, M., Exposé 10: Some Dynamics of Pseudo-Anosov Diffeomorphisms, Travaux de Thurston sur les Surfaces, Astérisque 66-7 Société Mathématique de France, Paris (1979).
- Franks, John, Global Analysis, Proceedings of Symposia in Pure Mathematics 14, American Mathematical Society, Providence, Rhode Island (1970).
- John M. Franks, Invariant sets of hyperbolic toral automorphisms, Amer. J. Math. 99 (1977), no. 5, 1089–1095. MR 482846, DOI 10.2307/2374001
- F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik, Band 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 0107647
- Samuel Karlin and Howard M. Taylor, A first course in stochastic processes, 2nd ed., Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0356197
- Howard Masur and John Smillie, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2) 134 (1991), no. 3, 455–543. MR 1135877, DOI 10.2307/2944356
- Rykken, E., Expanding Factors for Pseudo-Anosov Homeomorphisms (preprint) (1997).
Bibliographic Information
- J. Franks
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- Address at time of publication: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 68865
- Email: john@math.nwu.edu
- E. Rykken
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- Address at time of publication: Department of Mathematics, Indiana University Northwest, Gary, Indiana 46408
- Email: erykken@iunhaw1.iun.indiana.edu
- Received by editor(s): August 22, 1997
- Received by editor(s) in revised form: October 1, 1997
- Published electronically: February 17, 1999
- Communicated by: Mary Rees
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2183-2192
- MSC (1991): Primary 58F15
- DOI: https://doi.org/10.1090/S0002-9939-99-04731-0
- MathSciNet review: 1485474