Normality and paracompactness of the Fell topology
HTML articles powered by AMS MathViewer
- by L’. Holá, S. Levi and J. Pelant
- Proc. Amer. Math. Soc. 127 (1999), 2193-2197
- DOI: https://doi.org/10.1090/S0002-9939-99-04737-1
- Published electronically: March 1, 1999
- PDF | Request permission
Abstract:
Let $X$ be a Hausdorff topological space and $CL(X)$ the hyperspace of all closed nonempty subsets of $X$. We show that the Fell topology on $CL(X)$ is normal if and only if the space $X$ is Lindelöf and locally compact. For the Fell topology normality, paracompactness and Lindelöfness are equivalent.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850
- Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778, DOI 10.1007/978-94-015-8149-3
- Gerald Beer, On the Fell topology, Set-Valued Anal. 1 (1993), no. 1, 69–80. MR 1230370, DOI 10.1007/BF01039292
- Gerald Beer and Robert Tamaki, The infimal value functional and the uniformization of hit-and-miss hyperspace topologies, Proc. Amer. Math. Soc. 122 (1994), no. 2, 601–612. MR 1264804, DOI 10.1090/S0002-9939-1994-1264804-5
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476. MR 139135, DOI 10.1090/S0002-9939-1962-0139135-6
- Jürgen Flachsmeyer, Verschiedene Topologisierungen im Raum der abgeschlossenen Mengen, Math. Nachr. 26 (1963/64), 321–337 (German). MR 174026, DOI 10.1002/mana.19630260602
- L.Hola, S.Levi, Decomposition properties of hyperspace topologies, Set-Valued Analysis to appear.
- James Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760–766. MR 253292, DOI 10.1090/S0002-9939-1970-0253292-7
- James Keesling, On the equivalence of normality and compactness in hyperspaces, Pacific J. Math. 33 (1970), 657–667. MR 267516, DOI 10.2140/pjm.1970.33.657
- G. Matheron, Random sets and integral geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-London-Sydney, 1975. With a foreword by Geoffrey S. Watson. MR 0385969
- E.Michael, Topologies on spaces of subsets, Trans. Amer.Math. Soc. 71 (1951), 152-182.
- Harry Poppe, Einige Bemerkungen über den Raum der abgeschlossenen Mengen, Fund. Math. 59 (1966), 159–169 (German). MR 198415, DOI 10.4064/fm-59-2-159-169
- N. V. Veličko, The space of closed subsets, Sibirsk. Mat. Ž. 16 (1975), no. 3, 627–629, 646 (Russian). MR 0377800
Bibliographic Information
- L’. Holá
- Affiliation: Mathematical Institute, Slovak Academy of Sciences, Štefániková 49 Bratislava, Slovakia
- Email: hola@mau.savba.sk
- S. Levi
- Affiliation: Dipartimento di Matematica, Universita di Milano, Via C. Saldini 50, 20133 Milano, Italy
- Email: slevi@vmimat.mat.unimi.it
- J. Pelant
- Affiliation: Mathematical Institute, Czech Academy of Sciences, Žitná 25, 115 67 Praha, Czech republic
- Email: pelant@beba.cesnet.cz
- Received by editor(s): February 12, 1997
- Received by editor(s) in revised form: October 7, 1997
- Published electronically: March 1, 1999
- Additional Notes: The third author was partially supported by the grant GACR 201/94/0069 and the grant 119 401 of Acad. Sci. CR
- Communicated by: Alan Dow
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2193-2197
- MSC (1991): Primary 54B20
- DOI: https://doi.org/10.1090/S0002-9939-99-04737-1
- MathSciNet review: 1485480