On equivariant slice knots
HTML articles powered by AMS MathViewer
- by Jae Choon Cha and Ki Hyoung Ko
- Proc. Amer. Math. Soc. 127 (1999), 2175-2182
- DOI: https://doi.org/10.1090/S0002-9939-99-04868-6
- Published electronically: March 1, 1999
- PDF | Request permission
Abstract:
We suggest a method to detect that two periodic knots are not equivariantly concordant, using surgery on factor links. We construct examples which satisfy all known necessary conditions for equivariant slice knots— Naik’s and Choi-Ko-Song’s improvements of classical results on Seifert forms and Casson-Gordon invariants of slice knots — but are not equivariantly slice.References
- A. Casson and C. Gordon, Cobordism of classical knots, “A la recherche de la Topologie perdue", ed. by Guillou and Marin, Progress in Mathematics, Volume 62, 1986.
- A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 39–53. MR 520521
- J. Cha. Signatures of links in rational homology spheres, preprint.
- D. Choi, K. Ko and W. Song, Concordance of periodic knots, preprint.
- D. Cooper, The universal abelian cover of a link, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 51–66. MR 662427
- Charles H. Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966), 187–198. MR 198462, DOI 10.2307/2373054
- Patrick M. Gilmer, Slice knots in $S^{3}$, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 135, 305–322. MR 711523, DOI 10.1093/qmath/34.3.305
- Patrick Gilmer, Classical knot and link concordance, Comment. Math. Helv. 68 (1993), no. 1, 1–19. MR 1201199, DOI 10.1007/BF02565807
- P. Gilmer and C. Livingston, The Casson-Gordon invariant and link concordance, Topology 31 (1992), no. 3, 475–492. MR 1174253, DOI 10.1016/0040-9383(92)90045-J
- Patrick Gilmer and Charles Livingston, Discriminants of Casson-Gordon invariants, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 1, 127–139. MR 1162937, DOI 10.1017/S0305004100070808
- J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 246314, DOI 10.1007/BF02564525
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163
- Kunio Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162–174. MR 292060, DOI 10.1007/BF02566836
- S. Naik, Equivariant concordance of knots in $S^3$, Proceedings of Knots 96 (Edited by Shin’ichi Suzuki), World Scientific Publishing Co., 1997, pp 81–89.
Bibliographic Information
- Jae Choon Cha
- Affiliation: Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon, 305–701, Korea
- Email: jccha@knot.kaist.ac.kr
- Ki Hyoung Ko
- Affiliation: Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon, 305–701, Korea
- Email: knot@knot.kaist.ac.kr
- Received by editor(s): September 21, 1997
- Published electronically: March 1, 1999
- Communicated by: Ronald A. Fintushel
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2175-2182
- MSC (1991): Primary 57M25, 57M60; Secondary 57Q60
- DOI: https://doi.org/10.1090/S0002-9939-99-04868-6
- MathSciNet review: 1605928