UNIFORM DISTRIBUTION MODULO ONE ON SUBSEQUENCES

CHRIS HILL

(Communicated by David E. Rohrlich)

Abstract. Let \(\mathcal{P} \) be a set of primes with a divergent series of reciprocals and let \(\mathcal{K} = \mathcal{K}(\mathcal{P}) \) denote the set of squarefree integers greater than one that are divisible only by primes in \(\mathcal{P} \). G. Myerson and A. D. Pollington proved that \((u_n)_{n \geq 1} \subset [0,1) \) is uniformly distributed (mod 1) whenever the subsequence \((u_{kn})_{n \geq 1} \) is uniformly distributed (mod 1) for every \(k \) in \(\mathcal{K} \). We show that in fact \((u_n)_{n \geq 1} \) is uniformly distributed (mod 1) whenever the subsequence \((u_{pn})_{n \geq 1} \) is uniformly distributed (mod 1) for every \(p \in \mathcal{P} \).

1. Introduction

In [4], G. Myerson and A. D. Pollington proved several intriguing results about uniform distribution modulo one, including the following theorem.

Theorem A (Myerson-Pollington). Let \(\mathcal{P} \) be a set of primes such that \(\sum \{1/p : p \in \mathcal{P} \} \) diverges. Let \(\mathcal{K} = \mathcal{K}(\mathcal{P}) \) denote the set of squarefree integers greater than one divisible only by primes in \(\mathcal{P} \). If \((u_{kn})_{n \geq 1} \) is uniformly distributed (mod 1) for every \(k \) in \(\mathcal{K} \), then \((u_n)_{n \geq 1} \) is uniformly distributed (mod 1).

The set \(\mathcal{K} \) in Theorem A functions as a kind of “test set,” used to probe the distribution of the sequence \((u_n) \). The following definition formalizes this notion.

Definition. A set \(S \) of integers greater than 1 is called a u.d. test set if the sequence \((u_n)_{n \geq 1} \subset [0,1) \) is uniformly distributed whenever the subsequence \((u_{sn})_{n \geq 1} \) is uniformly distributed for all \(s \in S \).

Note that if \(S \) is a set of positive integers greater than 1 and \(S \) contains a u.d. test set, then a fortiori \(S \) is a u.d. test set.

It is natural to look for other u.d. test sets besides the sets \(\mathcal{K}(\mathcal{P}) \) and their supersets. Our main result, Theorem 1 below, shows that the set of primes \(\mathcal{P} \) in Theorem A is itself a u.d. test set. Note that Theorem A is a consequence of Theorem 1, because in the former result \(\mathcal{P} \subset \mathcal{K} \).

Theorem 1. Let \(\mathcal{P} \) be a set of primes. Then \(\mathcal{P} \) is a u.d. test set if and only if \(\sum \{1/p : p \in \mathcal{P} \} \) diverges.

Myerson and Pollington proved Theorem A by using the Weyl criterion for uniform distribution and properties of the Möbius \(\mu \)-function. The path that we take...
to Theorem 1 is quite different. We introduce a second type of integer set, called a density test set, whose definition makes no reference to uniform distribution. In Theorem 2, stated below, the property of being a u.d. test set is shown to be equivalent to that of being a density test set. After proving Theorem 2, we provide a sufficient condition for being a density test set. Finally, we prove that a set of primes is a density test set if and only if the series of reciprocals of its elements diverges.

We require some notation to state the definition of a density test set.

Notation. Let $A \subseteq \mathbb{N}$. We let $dA = \lim_{N \to \infty} \frac{1}{N} \#\{n \leq N : n \in A\}$ denote the natural density of A, provided the limit exists. For each $s \in \mathbb{N}$, we define $A_s = \{n \in \mathbb{N} : sn \in A\}$. One may think of dA_s (if it exists) as being the density of the set $\{n \in A : s|n\}$ relative to the set $\{s, 2s, 3s, \ldots\}$.

Definition. Let S be a set of integers greater than 1. We say that S is a density test set if and only if S is a u.d. test set.

Theorem 2. S is a u.d. test set if and only if S is a density test set.

2. Proof of Theorem 2

We need a well-known result from the theory of uniform distribution. A proof is given in [3, Theorem 1.4.1].

Lemma 3. Let $(a_n)_{n \geq 1}$ be a given sequence of distinct integers. Then the sequence $(a_nx)_{n \geq 1}$ is uniformly distributed (mod 1) for almost all real numbers x.

Proof of Theorem 2. Assume that S is a density test set. Let $(u_n)_{n \geq 1} \subseteq [0, 1)$, and suppose that $(usn)_{n \geq 1}$ is uniformly distributed for each $s \in S$. Let $x \in (0, 1]$ be fixed, and let $A = A(x) = \{n : 0 \leq u_n < x\}$. For each $s \in S$ we have

$$\frac{1}{N} \#\{n \leq N : n \in A_s\} = \frac{1}{N} \#\{n \leq N : 0 \leq u_{sn} < x\} \to x \quad \text{as } N \to \infty,$$

that is, $dA_s = x$. Since S is a density test set, we may conclude that $dA = x$. Then

$$\frac{1}{N} \#\{n \leq N : 0 \leq u_n < x\} = \frac{1}{N} \#\{n \leq N : n \in A\} \to x \quad \text{as } N \to \infty.$$

It follows that (u_n) is uniformly distributed. Thus, S is a u.d. test set.

Next, we assume that S is a u.d. test set. Let A be a set of positive integers, and suppose that there is an $\alpha \in [0, 1]$ such that $dA_s = \alpha$ for each $s \in S$. It is convenient to consider the cases $0 < \alpha < 1$, $\alpha = 1$, and $\alpha = 0$ separately.

We assume first that $0 < \alpha < 1$. Let $A'_s = \mathbb{N}\backslash A_s$ for each $s \in S$. The sets A_s and A'_s have positive density, and hence are infinite. For each $s \in S$, let Γ_s denote the set of all real $x \in [0, 1]$ for which the sequence $(snx : n \in A_s)$ is uniformly distributed (mod 1), and let Γ'_s denote the set of all real $x \in [0, 1]$ for which $(snx : n \in A'_s)$ is uniformly distributed (mod 1). Let $\Gamma = (\bigcap_{s \in S} \Gamma_s) \cap (\bigcap_{s \in S} \Gamma'_s)$. By Lemma 3, each of the sets $[0, 1]\backslash \Gamma_s$ and $[0, 1]\backslash \Gamma'_s$ has measure 0, whence $[0, 1]\backslash \Gamma$ has measure 0. In particular, Γ is not empty. Select any $\gamma \in \Gamma$. Put $w_n = \{n\gamma\}$ for $n \geq 1$, that is, w_n is the fractional part of $n\gamma$. By construction, the sequences $(w_{sn} : n \in A_s)$ and $(w_{sn} : n \in A'_s)$ are uniformly distributed for each $s \in S$. We now define a sequence
Let $s \in S$. We claim that $(u_{sn})_{n \geq 1}$ is uniformly distributed. Take $0 < x \leq 1$. If $x \leq \alpha$, then
\[
\frac{1}{N} \# \{ n \leq N : 0 \leq u_{sn} < x \} = \frac{1}{N} \# \{ n \leq N : sn \in A, 0 \leq \alpha w_{sn} < x \}
\]
\[
= \frac{1}{N} \# \{ n \leq N : n \in A_s, 0 \leq w_{sn} < x/\alpha \}
\]
\[
\to dA_s \cdot \frac{x}{\alpha} = x \quad \text{as} \quad N \to \infty,
\]
since $(w_{sn} : n \in A_s)$ is uniformly distributed. On the other hand, if $x > \alpha$, then
\[
\frac{1}{N} \# \{ n \leq N : 0 \leq u_{sn} < x \} = \frac{1}{N} \# \{ n \leq N : sn \notin A, 0 \leq \alpha + (1-\alpha)w_{sn} < x \}
\]
\[
+ \frac{1}{N} \# \{ n \leq N : n \notin A_s, 0 \leq w_{sn} < (x/\alpha)/(1-\alpha) \}
\]
\[
\to dA_s + dA'_s \cdot \frac{x}{1-\alpha} = x \quad \text{as} \quad N \to \infty
\]
because $(w_{sn} : n \in A'_s)$ is uniformly distributed. Hence, $(u_{sn})_{n \geq 1}$ is uniformly distributed, as claimed. We deduce that $(u_n)_{n \geq 1}$ is uniformly distributed, by virtue of S being a u.d. test set. Noting that $A = \{ n : 0 \leq u_n < \alpha \}$, we see that dA exists and equals α.

Suppose now that $\alpha = 1$. Define the sets Γ_s for $s \in S$ as above, and let $\Gamma = \bigcap_{s \in S} \Gamma_s$. Select $\gamma \in \Gamma$, and let $w_n = \{n\gamma\}$ for $n \geq 1$. We define a sequence $(u_n)_{n \geq 1} \subset [0,1)$ by
\[
u_n = \begin{cases} w_n, & \text{if } n \in A, \\ 0, & \text{otherwise}. \end{cases}
\]
Arguing as in the last paragraph, we show that the subsequences $(u_{sn})_{n \geq 1}$ are uniformly distributed for each $s \in S$. Then (u_n) is itself uniformly distributed because S is a u.d. test set. In particular, $1 - dA = d\{ n : u_n = 0 \} = 0$, and hence, $dA = \alpha$.

Finally, we assume that $\alpha = 0$. Define the sets Γ'_s for $s \in S$ as before, and let $\Gamma = \bigcap_{s \in S} \Gamma'_s$. Select $\gamma \in \Gamma$, and let $w_n = \{n\gamma\}$ for $n \geq 1$. We define $(u_n)_{n \geq 1} \subset [0,1)$ by
\[
u_n = \begin{cases} 0, & \text{if } n \in A, \\ w_n, & \text{otherwise}. \end{cases}
\]
As above, we show that the subsequences $(u_{sn})_{n \geq 1}$ are uniformly distributed for each $s \in S$, which implies that (u_n) is itself uniformly distributed because S is a u.d. test set. Consequently, $dA = d\{ n : u_n = 0 \} = 0 = \alpha$.

With all cases checked, we conclude that S is a density test set. \qed
3. Proof of Theorem 1

We will deduce the principal implication in Theorem 1 from the following proposition.

Proposition 4. Let S be a set of integers greater than 1 such that $\sum \{1/s : s \in S\} = \infty$, and let $f(y) := \sum \{1/s : s \in S, s \leq y\}$. Let $[s,t]$ denote the least common multiple of positive integers s and t. Suppose that

$$\sum_{s,t \leq y} \frac{1}{s,t} \sim f(y)^2 \quad (y \to \infty).$$

Then S is a density test set.

Proof. Let $\tau_y(n,S)$ denote the number of $s \in S$ such that $s \leq y$ and $s|n$. In the course of the proof, we use Turán’s variance method (see [1, Chapter 4], for example) to show that $\tau_y(n,S)$ is close to $f(y)$ for “most” n.

Let A be a set of positive integers, and suppose that there exists $\alpha \in [0,1]$ such that $d_{Ax} = \alpha$ for each $s \in S$.

Let $1 \leq y \leq x$. Observe that

$$\frac{1}{x} \sum_{n \in A, n \leq x} \tau_y(n,S) = \frac{1}{x} \sum_{s \leq y} \sum_{n \in A} \frac{1}{s} = \sum_{s \leq y} \sum_{n \in A} \frac{1}{s} \left(\frac{\alpha}{s} + o_s(1) \right)$$

$$= \alpha f(y) + o_y(1) \quad (x \to \infty).$$

It follows that

$$\frac{1}{x} \sum_{n \in A, n \leq x} 1 + \frac{1}{x} \sum_{s \leq y} \left(\frac{\tau_y(n,S) - f(y)}{f(y)} \right) = \alpha + o_y(1) \quad (x \to \infty),$$

so that

$$\limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x} 1 - \alpha \leq \limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x} \left| \frac{\tau_y(n,S) - f(y)}{f(y)} \right|$$

for all y large enough that $f(y) > 0$.

We now further restrict y so that $1 \leq y \leq \sqrt{x}$. We have

$$\sum_{n \leq x} \tau_y(n,S)^2 = \sum_{n \leq x} \sum_{[s,t] \mid n, s,t \leq y} 1 = \sum_{[s,t] \leq x} \left[\frac{x}{[s,t]} \right] = x \sum_{[s,t] \leq y} \frac{1}{[s,t]} + O(x).$$

A similar but simpler argument shows that

$$\sum_{n \leq x} \tau_y(n,S) = xf(y) + O(y).$$

We combine our last two results to obtain

$$\sum_{n \leq x} (\tau_y(n,S) - f(y))^2 = \sum_{n \leq x} \tau_y(n,S)^2 - 2f(y) \sum_{n \leq x} \tau_y(n,S) + [x] f(y)^2$$

$$= x \left(\sum_{n \leq x} \frac{1}{[s,t]} - f(y)^2 \right) + O(x).$$
Using the hypothesis (1) we deduce that
\[\limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x} \left(\frac{\tau_y(n, S) - f(y)}{f(y)} \right)^2 = o(1) \quad (y \to \infty). \]

From (2), the Cauchy-Schwarz inequality, and (3), we have
\[\limsup_{x \to \infty} \left| \frac{1}{x} \sum_{n \leq x} 1 - \alpha \right| \leq \limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x} \left| \frac{\tau_y(n, S) - f(y)}{f(y)} \right| \cdot 1 \]
\[\leq \limsup_{x \to \infty} \frac{1}{x} \left(\sum_{n \leq x} \left| \frac{\tau_y(n, S) - f(y)}{f(y)} \right|^2 \right)^{1/2} \cdot x^{1/2} \]
\[= o(1) \quad (y \to \infty). \]

We let \(y \to \infty \) to conclude that \(dA = \alpha \). Thus, \(S \) is a density test set.

While Proposition 4 provides us with a sufficient condition for being a density test set, the next lemma offers a necessary condition. To state the result concisely, we use some terminology from the theory of sets of multiples. For \(S \subseteq \mathbb{N} \), let \(\mathcal{M}(S) = \{ ms : m \geq 1, s \in S \} \) be the set of multiples of numbers in \(S \). A set \(S \subseteq \mathbb{N} \setminus \{1\} \) is said to be **Behrend** if \(\mathcal{M}(S) \) has natural density 1. The interested reader can find a detailed discussion of Behrend sets in [2].

Lemma 5. If \(S \) is a density test set, then \(S \) is Behrend.

Proof. Let \(S \) be a density test set, and set \(A = \mathcal{M}(S) \). Since \(dA_s = 1 \) for each \(s \in S \), we have \(dA = 1 \). Thus, \(S \) is Behrend. \(\square \)

The proof of Theorem 1 uses a basic property of Behrend sets, which we state in Lemma 6. A proof is given in [2, Corollary 0.10].

Lemma 6. The series of reciprocals of elements from a Behrend set diverges.

Proof of Theorem 1. In view of Theorem 2, it suffices to show that \(P \) is a density test set if and only if \(\sum \{1/p : p \in P\} \) diverges.

If \(P \) is a density test set, then \(\sum \{1/p : p \in P\} \) diverges by Lemmas 5 and 6.

Now assume that \(\sum \{1/p : p \in P\} = \infty \). Let \(f(y) = \sum \{1/p : p \in P, p \leq y\} \). We have
\[\sum_{p, q \in P, p \leq y} \frac{1}{[p, q]} = f(y)^2 + f(y) + O(1) \sim f(y)^2 \quad (y \to \infty). \]

Then \(P \) is a density test set by Proposition 4. \(\square \)

4. Concluding remarks

A problem that is complementary to the one considered in this paper is the following. If \((u_n) \subset [0, 1) \) is uniformly distributed, need the subsequence \((u_{kn})_{n \geq 1}\) be uniformly distributed for some \(k > 1 \)? Myerson and Pollington [4] have shown that the answer is a resounding “no.” They constructed a uniformly distributed sequence \((u_n)\) such that the subsequence \((u_{kn+j})_{n \geq 1}\) is not uniformly distributed for all integers \(k \geq 2 \) and \(j \geq 0 \).

It would be of interest to find a simple characterization of density test sets (or equivalently, of u.d. test sets). One might conjecture that a set \(S \) is a density test
set if and only if \(S \) is Behrend. Indeed, Theorem 1 and Lemmas 5 and 6 establish this equivalence when \(S \) consists only of primes. We can prove that the equivalence also holds when the elements of \(S \) have at most two prime factors, but at this point we are unable to settle the general case.

References

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801

Current address: Department of Mathematics and Computer Science, Grinnell College, Grinnell, Iowa 50112

E-mail address: hillc@math.grin.edu