On the semisimplicity of polyhedral isometries
HTML articles powered by AMS MathViewer
- by Martin R. Bridson
- Proc. Amer. Math. Soc. 127 (1999), 2143-2146
- DOI: https://doi.org/10.1090/S0002-9939-99-05187-4
- Published electronically: March 16, 1999
- PDF | Request permission
Abstract:
If a polyhedral complex $K$ has only finitely many isometry types of cells, then all of its cellular isometries are semisimple. If $K$ is 1-connected and non-positively curved, then any solvable group that acts freely by cellular isometries on $K$ is finitely generated and contains an abelian subgroup of finite index.References
- Martin R. Bridson, Geodesics and curvature in metric simplicial complexes, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 373–463. MR 1170372
- M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin-Heidelberg-New York, 1999.
- M. Burger and S. Mozes, $\textrm {CAT}$(-$1$)-spaces, divergence groups and their commensurators, J. Amer. Math. Soc. 9 (1996), no. 1, 57–93. MR 1325797, DOI 10.1090/S0894-0347-96-00196-8
- W. Ballmann and J. Świa̧tkowski, On groups which act on cube complexes, preprint, 1998.
- Detlef Gromoll and Joseph A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971), 545–552. MR 281122, DOI 10.1090/S0002-9904-1971-12747-7
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- M. Gromov, Hyperbolic manifolds, groups and actions, Riemann Surfaces and related Topics (Stony Brook, 1978), Ann. of Math. Studies, vol. 97, Princeton Univ. Press, 1981, pp. 183–213.
- H. Blaine Lawson Jr. and Shing Tung Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972), 211–228. MR 334083
- G. A. Margulis, Discrete subgroups of Lie groups, Ergebnisse der Math., Springer-Verlag, Berlin-Heidelberg-New York, 1990.
- Daniel Segal, Polycyclic groups, Cambridge Tracts in Mathematics, vol. 82, Cambridge University Press, Cambridge, 1983. MR 713786, DOI 10.1017/CBO9780511565953
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Martin R. Bridson
- Affiliation: Mathematical Institute, 24–29 St Giles’, Oxford, OX1 3LB, United Kingdom
- MR Author ID: 324657
- Email: bridson@maths.ox.ac.uk
- Received by editor(s): October 7, 1997
- Published electronically: March 16, 1999
- Additional Notes: This work was supported by an EPSRC Advanced Fellowship, NSF grant 9401362 and the British Council
- Communicated by: Ronald M. Solomon
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2143-2146
- MSC (1991): Primary 53C23, 20F32
- DOI: https://doi.org/10.1090/S0002-9939-99-05187-4
- MathSciNet review: 1646316