A characterization of $\sigma$-compactness of a cosmic space $X$ by means of subspaces of $R^X$
HTML articles powered by AMS MathViewer
- by A. V. Arhangel’skii and J. Calbrix
- Proc. Amer. Math. Soc. 127 (1999), 2497-2504
- DOI: https://doi.org/10.1090/S0002-9939-99-04782-6
- Published electronically: April 15, 1999
- PDF | Request permission
Abstract:
This work is devoted to the relationship between topological properties of a space $X$ and those of $C_{p}(X)$ (= the space of continuous real-valued functions on $X$, with the topology of pointwise convergence). The emphasis is on $\sigma$-compactness of $X$ and on location of $C_{p}(X)$ in $R^{X}$. In particular, $\sigma$-compact cosmic spaces are characterized in this way.References
- A. Arhangel′skiĭ, An addition theorem for the weight of sets lying in bicompacts, Dokl. Akad. Nauk SSSR 126 (1959), 239–241 (Russian). MR 0106444
- A.V. Arhangel’skii, Function spaces in the topology of pointwise convergence and compact sets, Russian Math. Surveys 39:5 (1984), 9-56.
- A. V. Arkhangel′skiĭ, Topological function spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian by R. A. M. Hoksbergen. MR 1144519, DOI 10.1007/978-94-011-2598-7
- A.V. Arhangel’skii, $C_{p}$-theory, in: Recent Progress in General Topology, Hušek, van Mill Ed-rs, Elsevier Sciences Publishers B.V., (1992), 3-48.
- Amer Bešlagić, Embedding cosmic spaces in Lusin spaces, Proc. Amer. Math. Soc. 89 (1983), no. 3, 515–518. MR 715877, DOI 10.1090/S0002-9939-1983-0715877-X
- Jean Calbrix, Une propriété des espaces topologiques réguliers, images continues d’espaces métrisables séparables, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 81–82 (French, with English summary). MR 676368
- Jean Calbrix, Espaces $K_\sigma$ et espaces des applications continues, Bull. Soc. Math. France 113 (1985), no. 2, 183–203 (French, with English summary). MR 820318
- Jean Calbrix, Filtres sur les entiers et ensembles analytiques, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 4, 109–111 (French, with English summary). MR 901620
- Jean Calbrix, $k$-spaces and Borel filters on the set of integers, Trans. Amer. Math. Soc. 348 (1996), no. 5, 2085–2090 (French, with English summary). MR 1355296, DOI 10.1090/S0002-9947-96-01635-2
- Gustave Choquet, Ensembles ${\cal K}$-analytiques et ${\cal K}$-sousliniens. Cas général et cas métrique, Ann. Inst. Fourier (Grenoble) 9 (1959), 75–81 (French). MR 112843
- J. P. R. Christensen, Topology and Borel structure, North-Holland Mathematics Studies, Vol. 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory. MR 0348724
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Z. Frolik, On analytic spaces, Bull. Acad. Polon. Sci., 8, (1961), 747-750.
- J. E. Jayne, Structure of analytic Hausdorff spaces, Mathematika 23 (1976), no. 2, 208–211. MR 461466, DOI 10.1112/S0025579300008809
- J. E. Jayne and C. A. Rogers, Borel isomorphisms at the first level. I, Mathematika 26 (1979), no. 1, 125–156. MR 557137, DOI 10.1112/S0025579300009712
- C.A. Rogers, J.E. Jayne, C. Dellacherie, F. Topsoe, J. Hoffman-Jorgensen, D.A. Martin, A.S. Kehris, and A.H. Stone, Analytic sets, Academic Press, London, 1980.
- E. Michael, $\aleph _{0}$-spaces, J. Math. Mech. 15 (1966), 983–1002. MR 0206907
- O. G. Okunev, On Lindelöf $\Sigma$-spaces of continuous functions in the pointwise topology, Topology Appl. 49 (1993), no. 2, 149–166. MR 1206222, DOI 10.1016/0166-8641(93)90041-B
- O. G. Okunev, Weak topology of a dual space and a $t$-equivalence relation, Mat. Zametki 46 (1989), no. 1, 53–59, 123 (Russian); English transl., Math. Notes 46 (1989), no. 1-2, 534–538 (1990). MR 1019256, DOI 10.1007/BF01159103
- Oleg Okunev, On analyticity in cosmic spaces, Comment. Math. Univ. Carolin. 34 (1993), no. 1, 185–190. MR 1240216
- Jean Saint-Raymond, Caractérisation d’espaces polonais. D’après des travaux récents de J. P. R. Christensen et D. Preiss, Séminaire Choquet, 11e–12e années (1971–1973), Initiation à l’analyse, Secrétariat Mathématique, Paris, 1973, pp. Exp. No. 5, 10 (French). MR 0473133
Bibliographic Information
- A. V. Arhangel’skii
- Affiliation: January–June: Department of Mathematics, Ohio University, Athens, Ohio 45701; July–December: Department of Mathematics, Moscow State University, Moscow 119 899, Russia
- Email: arhangel@bing.math.ohiou.edu
- J. Calbrix
- Affiliation: Université de Rouen, URA CNRS 1378, UFR de Sciences, 76821 Mont Saint Aignan Cedex, France
- Email: Jean.Calbrix@univ-rouen.fr
- Received by editor(s): December 8, 1996
- Received by editor(s) in revised form: November 1, 1997, and November 12, 1997
- Published electronically: April 15, 1999
- Communicated by: Alan Dow
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2497-2504
- MSC (1991): Primary 54C35; Secondary 54D45, 28A05
- DOI: https://doi.org/10.1090/S0002-9939-99-04782-6
- MathSciNet review: 1487355