FINITE-DIMENSIONAL LEFT IDEALS IN SOME ALGEBRAS ASSOCIATED WITH A LOCALLY COMPACT GROUP

M. FILALI

(Communicated by Palle E. T. Jorgensen)

Abstract. Let G be a locally compact group, let $L^1(G)$ be its group algebra, let $M(G)$ be its usual measure algebra, let $L^1(G)$ be the second dual of $L^1(G)$ with an Arens product, and let $LUC(G)$ be the conjugate of the space $LUC(G)$ of bounded, left uniformly continuous, complex-valued functions on G with an Arens-type product. We find all the finite-dimensional left ideals of these algebras. We deduce that such ideals exist in $L^1(G)$ and $M(G)$ if and only if G is compact, and in $L^1(G)^{**}$ (except those generated by right annihilators of $L^1(G)^{**}$) and $LUC(G)^*$ if and only if G is amenable.

1. Introduction

Let G be a locally compact group, $L^1(G)$ be its group algebra, and $M(G)$ be its usual measure algebra. Other Banach algebras (usually larger than $L^1(G)$ and $M(G)$) can also be associated with G. For instance, the second dual $L^1(G)^{**}$ of $L^1(G)$ is a Banach algebra with an Arens product. One can also consider the space $LUC(G)$ of the bounded left uniformly continuous functions on G, or the space $WAP(G)$ of the weakly almost periodic functions on G. An Arens-type product can be introduced into the conjugate of each of these spaces of functions and make them into Banach algebras. Let \mathcal{A} denote any of these algebras. Our main concern in this paper is with the finite-dimensional left ideals in \mathcal{A}. We start in Theorem 1 by giving examples of such ideals. These examples are obtained with the help of the U-invariant elements of \mathcal{A} where U is a continuous and bounded representation of G on \mathbb{C}^n. This notion has already been introduced in earlier papers with $n = 1$. In [3], the so-called χ-invariant elements (where χ is a character of G) were introduced in order to determine the minimal left ideals of these algebras when G is abelian. In [4], these type of elements were referred to as λ-invariant elements with $\lambda \in \mathbb{T}$, and were used to solve some linear equations in $\ell^\infty(\mathbb{Z})^*$, then to determine the finite-dimensional left ideals in this case. In [5], the U-invariance was used to study the minimal ideals in these algebras. In Theorems 2 and 3, we determine all the finite-dimensional left ideals in \mathcal{A} and show that they are in general of the form given in Theorem 1. This is a generalization of the result obtained in [4, 2.7(a)]. We deduce in the corollary which follows that such ideals exist in $LUC(G)^*$ and in $L^1(G)^{**}$ (apart from those generated by right annihilators of $L^1(G)^{**}$) if and only
if G is amenable. In $L^1(G)$ and $M(G)$, the ideals of finite-dimension exist if and only if G is compact.

2. Preliminaries

Let G be a locally compact group with a left Haar measure λ, and a Haar modular function Δ. For measurable functions f and ϕ on G and for $s \in G$, we write

$$f \ast \phi(s) = \int_G f(t)\phi(t^{-1}s) \, d\lambda(t)$$

whenever the integral exists. We shall be concerned with the following Banach algebras which are related to G. We begin by recalling, of course, the most intimate ones: the group algebra $L^1(G)$ and the measure algebra $M(G)$. The first one is the Banach algebra of all measurable complex-valued functions ϕ on G satisfying

$$\int_G |\phi(s)| \, d\lambda(s) < \infty.$$

The product of two elements ϕ and ψ in $L^1(G)$ is $\phi \ast \psi$. The second one is the Banach algebra of all bounded, regular, Borel measures on G. By the Riesz representation theorem (see [8, Chapter 3]), we shall regard a measure in $M(G)$ as an element of $C_0(G)^*$, where $C_0(G)$ is the space of continuous complex-valued functions on G vanishing at infinity. The product of two elements μ and ν of $M(G)$ is given then by

$$(\mu \nu)(f) = \int_G \int_G f(st) \, d\mu(s) \, d\nu(t) = \int_G \int_G f(st) \, d\nu(t) \, d\mu(s) \quad \text{for} \quad f \in C_0(G).$$

Furthermore, for each $\phi \in L^1(G)$, we define $\lambda_{\phi} \in M(G)$ by

$$\lambda_{\phi}(f) = \int_G f(s)\phi(s) \, d\lambda(s) \quad \text{for} \quad f \in C_0(G).$$

Then under the map $\phi \mapsto \lambda_{\phi}$, we will regard $L^1(G)$ as a subalgebra of $M(G)$. In fact, $L^1(G)$ is a closed two-sided ideal of $M(G)$ (see for example [8, Theorem 19.18]). The other algebras which we shall consider are defined in the following way. Let $L^\infty(G)$ be the Banach space of all measurable complex-valued functions that are bounded almost everywhere with respect to λ, and for each $\phi \in L^\infty(G)$, let $\hat{\phi}$ be the function defined on G by $\hat{\phi}(s) = \Delta(s^{-1})\phi(s^{-1})$. The Banach space $L^1(G)^{**}$ becomes a Banach algebra with the first Arens product. This product is obtained by first letting

$$f_\nu(\phi) = \nu(\hat{\phi} \ast f) \quad \text{for all} \quad \nu \in L^1(G)^{**}, \ f \in L^\infty(G) \text{ and } \phi \in L^1(G).$$

Then, for μ and ν in $L^1(G)^{**}$,

$$(\mu \nu)(f) = \mu(f_\nu) \quad \text{for all} \quad f \in L^\infty(G).$$

Let $C(G)$ denote the space of all bounded, complex-valued, continuous functions on G. The left translate of a function f on G by $s \in G$ is defined by $f_s(t) = f(st)$ for all $t \in G$. Let $LUC(G)$ be the space of left uniformly continuous functions in $C(G)$, i.e.,

$$LUC(G) = \{ f \in C(G) : s \mapsto f_s : G \to C(G) \text{ is norm continuous} \}.$$
Then $LUC(G)^*$ is also a Banach algebra under the product
\[(\mu \nu)(f) = \mu(f \nu) \quad \text{for all } f \in LUC(G), \quad \text{where} \]
\[f_\nu(s) = \nu(f_s) \quad \text{for all } s \in G \]
(the function f_ν is easily seen to be in $LUC(G)$). Note that the product in $M(G)$ (and so in $L^1(G)$) is defined in the same way with $C_0(G)$ instead of $LUC(G)$.

More generally, one can start with a norm closed, conjugate closed subspace F of $C(G)$ containing the constant functions and having the property that the functions f_s and f_μ are in F for all $f \in F$, $s \in G$ and $\mu \in F^*$ (the functions f_s and f_μ are defined as earlier in $LUC(G)$). Following [2, Definition 2.2.10], such an F is said to be admissible; the space F^* also becomes a Banach algebra under the product
\[(\mu \nu)(f) = \mu(f_\nu) \quad \text{for all } f \in F.\]

For more details, the reader is directed to [2, pages 72-78]. As we have already seen, $LUC(G)$ is admissible. Other examples are the space $WAP(G)$ of weakly almost periodic functions on G, and the space $AP(G)$ of almost periodic functions on G. These spaces are
\[WAP(G) = \{ f \in C(G) : f_G \text{ is weakly relatively compact} \}, \]
\[AP(G) = \{ f \in C(G) : f_G \text{ is norm relatively compact} \}, \]
where
\[f_G = \{ f_s : s \in G \}. \]

Let \mathcal{A} denote each of the Banach algebras $L^1(G)$, $M(G)$, $L^1(G)^{**}$, and F^*, where F is an admissible subspace of $C(G)$ with $AP(G)F \subseteq F$. Apart from $L^1(G)$, the algebra \mathcal{A} is the dual of some Banach space of functions of G, which we shall denote by \mathcal{F}. In the case of $L^1(G)$, we let $\mathcal{F} = C_0(G)$. When $\mathcal{A} = F^*$ or $M(G)$, the group G may be embedded continuously into \mathcal{A} by the mapping $e : G \rightarrow \mathcal{A}$ which is defined by
\[e(s)(f) = f(s) \quad \text{for all } s \in G \text{ and } f \in \mathcal{F}. \]

We recall that an element μ of \mathcal{A} is left invariant if
\[\mu(f_s) = \mu(f) \quad \text{for all } f \in \mathcal{F} \text{ and } s \in G. \]

When $L^1(G) \ast \mathcal{F} \subseteq \mathcal{F}$, we say that $\mu \in \mathcal{A}$ is topologically left invariant if
\[\mu(\phi \ast f) = \left(\int_G \phi(s) \, d\lambda(s) \right) \mu(f) \quad \text{for all } \phi \in L^1(G) \text{ and } f \in \mathcal{F}. \]

The notions of left invariance and topological left invariance are equivalent when $\mathcal{F} \subseteq LUC(G)$. But this is not so if $\mathcal{F} = L_\infty(G)$. We say that \mathcal{F} is amenable if there is a non-zero left invariant (or equivalently a topologically left invariant) element in \mathcal{A}. When G is a compact topological group, $C_0(G) = C(G)$ is amenable since $\lambda \in C(G)^*$. The spaces $WAP(G)$ and $AP(G)$ are always amenable. But this is not so for $LUC(G)$ and $L_\infty(G)$; for example, when G is the free group on two generators (see [2, Example 3.4(e)]). So we say that the group G is amenable if $L_\infty(G)$, or equivalently $LUC(G)$, is amenable. See [2] or [7].

We shall also need representations of G on \mathbb{C}^n. Recall that a representation of G on a Hilbert space H is a homomorphism of G into the semigroup of bounded operators on H. We say that U is continuous when the function $s \mapsto U(s)\bar{x}$ is continuous on G for each $\bar{x} \in H$. We say that U is irreducible when $\{0\}$ and H are the only invariant (closed) subspaces under all $U(s)$, i.e., there is no (closed)
subspace E other than $\{0\}$ and H satisfying $U(s)E \subseteq E$ for all $s \in G$. We also recall that there is a one-to-one correspondence between the representations of $L^1(G)$ on H and those of G on H. This is given by the formula

$$
\langle U(\phi)\bar{x}, \bar{y} \rangle = \int_G \langle U(s)\bar{x}, \bar{y} \rangle \phi(s) \, d\lambda(s) \quad \phi \in L^1(G), \; \bar{x}, \bar{y} \in H;
$$

see [8, Section 22]. Since we shall be concerned solely with representations U on $H = \mathbb{C}^n$, we fix a basis $\{\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n\}$ for \mathbb{C}^n, and correspond to U the matrix representation $U = (u_{ij})_{i,j=1}^n$, where u_{ij} are the coordinate functions defined on G by

$$
u_{ij}(s) = \langle U(s)\bar{x}_i, \bar{y}_j \rangle.
$$

Note that the letter U is used to denote the representations of G, $L^1(G)$, and their corresponding matrices, but we promise the reader that this will cause no confusion.

3. Left ideals of finite-dimension

The notion of χ-invariance, where χ is a continuous character of G was introduced in [3] to determine the minimal left ideals of \mathcal{A} when G is abelian. In this section, we generalize this notion by defining the U-invariant vectors of \mathcal{A}^n, where U is a representation of G on \mathbb{C}^n. The U-invariance is essential to determine the finite-dimensional left ideals of these algebras. Some of the arguments in Theorems 1 and 2 have already been in [1]; they are, however, simplified here with the help of the U-invariance. Before we state our main definition, we introduce the following notations.

Notations. Let $\mu \in \mathcal{A}$, $f \in \mathcal{F}$, $\bar{\mu} = (\mu_i)_{i=1}^n$ be a column vector in \mathcal{A}^n, and A be an $n \times n$ matrix with entries a_{ij} ($i, j = 1, \ldots, n$) in \mathcal{F}. Then we write $\mu(A) = (\mu(a_{ij}))_{i,j=1}^n$, $\bar{\mu}(f)$ is the column vector $((\mu_i(f)))_{i=1}^n$ of \mathbb{C}^n, $(A)\bar{\mu}$ is the column vector $\left(\sum_{j=1}^n \mu_j(a_{ij})\right)_{i=1}^n$ of \mathbb{C}^n (note that this is obtained with the matrix multiplication relative to the product given by the duality between \mathcal{A} and \mathcal{F}), and $\mu \bar{\mu}$ is the column vector $(\mu \mu_i)_{i=1}^n$ of \mathcal{A}^n. Furthermore, when A and B are $n \times n$ matrices whose entries are measurable functions on G then, whenever the integrals exist, we write

$$
A \cdot B = \int_G A(t)B(t) \, d\lambda(t),
$$

$$
A \ast B(s) = \int_G A(t)B(t^{-1}s) \, d\lambda(t),
$$

$$
A \bar{\ast} B = \int_G B(t^{-1}s)A(t) \, d\lambda(t).
$$

Definition. We say that a vector $\bar{\mu}$ of \mathcal{A}^n is U-invariant if there exists a continuous and bounded representation U of G on \mathbb{C}^n such that

$$
\bar{\mu}(f_s) = U(s^{-1})\bar{\mu}(f) \quad \text{for each} \; f \in \mathcal{F} \text{ and } s \in G.
$$

When $\mathcal{A} = L^1(G)^{**}$, we say that $\bar{\mu}$ be topologically U-invariant if

$$
\bar{\mu}(f \ast f) = U(\phi)\bar{\mu}(f) \quad \text{for each} \; f \in L^\infty(G) \text{ and } \phi \in L^1(G).
$$

Let \widetilde{U} be defined on G by $\widetilde{U}(s) = U(s^{-1})$. A direct computation leads to the following lemma. We omit the proof.
Lemma 1. Let A be an $n \times n$ matrix with entries in F, and for $s \in G$, let A_s be the matrix whose entries are the left translates of those of A by s. Let Φ be an $n \times n$ matrix with entries in $L^1(G)$.

1. If $\mu \in A^n$ is U-invariant, then $(A_s)\mu = \left(AU(s)\right)\mu$.

2. If $A = L^1(G)^{**}$ and $\mu \in A^n$ is topologically U-invariant, then

\[
(\Phi \ast A)\mu = (\Phi \cdot A(\cdot U))\mu \quad \text{and} \quad (\Phi \ast A)\mu = (A(\Phi \cdot U))\mu,
\]

where $\Phi \cdot A(\cdot U)$ is the matrix-valued function defined on G by $\Phi \cdot A(s)U = \int_G \Phi(t)A(s)U(t)\,d\lambda(t)$.

Lemma 2. Let U be a continuous and bounded representation of G on \mathbb{C}^n, and let I be the identity representation. Let μ and ν be in A^n such that $\mu(f) = (fU)\nu$ for all $f \in F$; or equivalently, $\nu(f) = (fU)\mu$ for all $f \in F$. Then

1. ν is I-invariant if and only if μ is U-invariant,

2. when $A = L^1(G)^{**}$, ν is topologically I-invariant if and only if μ is topologically U-invariant.

Remark. Observe that $(fU)\nu$ and $(fU)\mu$ are well defined in the lemma. This is due to the fact that the coordinate functions of U and \tilde{U} are almost periodic (which is easy to verify, or see [1, Lemma 1]) and the extra assumption that $AP(G)F \subseteq F$.

Proof of Lemma 2. Let $\nu \in A^n$ be I-invariant, $s \in G$ and $f \in F$. Then, by Lemma 1,

\[
\tilde{\mu}(s) = (sU)\nu = (\tilde{U}(s)fs)\nu = \tilde{U}(s)fU)\nu = \tilde{U}(s)\mu(f).
\]

So $\tilde{\mu}$ is U-invariant. For the converse, let $\tilde{\mu}$ be U-invariant, $s \in G$ and $f \in F$. Then

\[
\tilde{\nu}(s) = (sUU(s))\tilde{\mu} = (sUU(s))\nu = (\tilde{U}U(s))\nu = (\tilde{U}U(s))\tilde{\mu} = \tilde{\nu}(s).
\]

So $\tilde{\nu}$ is I-invariant.

Statement (2) follows with the help of statement (2) of Lemma 1. Let $\tilde{\nu}$ be topologically I-invariant, $\phi \in L^1(G)$ and $f \in L^\infty(G)$. We remark first that

\[
(\phi \ast f)U(s) = U(s) \int_G \phi(t)f(t^{-1}s)\,d\lambda(t)
\]

\[
= \int_G U(tU(t^{-1}s))\phi(t)f(t^{-1}s)\,d\lambda(t) = (\phi U) \ast (fU)(s).
\]

Therefore,

\[
\tilde{\mu}(\phi \ast f) = ((\phi \ast f)U)\nu = ((\phi U) \ast (fU))\nu = ((\phi U) \cdot (fU)(\cdot U))\nu
\]

\[
= \left(\int_G U(s)\phi(s)d\lambda(s)\right)(fU)\nu = U(\phi)\tilde{\mu}(f),
\]

and so $\tilde{\mu}$ is topologically U-invariant.

For the converse, let $\tilde{\mu}$ be topologically U-invariant, $f \in L^\infty(G)$ and $\phi \in L^1(G)$. Then, for each $s \in G$,

\[
(\phi \ast f)\tilde{U}(s) = \tilde{U}(s) \int_G \phi(t)f(t^{-1}s)\,d\lambda(t)
\]

\[
= \int_G \tilde{U}(t^{-1}s)\tilde{U}(t)\phi(t)f(t^{-1}s)\,d\lambda(t) = (\phi \tilde{U})\tilde{\mu}(fU)(s),
\]
Thus, $(\phi \ast f)\overline{U} \mu = \left((\phi \overline{U})(f \overline{U})\right) \overline{U} = \left(\int_G \phi(s)U(s)d\lambda(s)\right) \overline{U} = \left(\int_G \phi(s)d\lambda(s)\right) (f \overline{U} \mu) = \int_G f \overline{U} d\lambda = \overline{U}(f)$.

So \widetilde{U} is topologically I-invariant.

Theorem 1. Let G be a locally compact group. Let $\overline{\mu} \in \mathcal{A}^n$ and M be the linear span of the coordinates $\mu_1, \mu_2, ..., \mu_n$ of $\overline{\mu}$. Let U be a continuous and bounded representation of G on \mathbb{C}^n. Then M is a left ideal of \mathcal{A} of dimension less or equal to n in each of the following cases:

1. F is amenable, $\mathcal{A} = F^*$ and $\overline{\mu}$ is U-invariant.
2. G is amenable, $\mathcal{A} = L^1(G)^{\ast\ast}$ and $\overline{\mu}$ is topologically U-invariant.
3. G is compact, $\mathcal{A} = L^1(G)$ or $M(G)$, and $\overline{\mu}$ is U-invariant.

Furthermore, M is minimal and of dimension n when U is irreducible.

Proof. We consider only the first two statements. The proof of statement (3) is similar. Let $\mathcal{A} = F^*$, and let $\overline{\mu}$ be U-invariant. That M is a left ideal follows directly from the lemma above. Let μ be arbitrary in F^* and $f \in F$. Then $(\mu \overline{\mu})(f) = \mu(f\overline{\mu})$, where $f\overline{\mu}(s) = \overline{\mu}(f_s) = \overline{U}(s)\overline{\mu}(f)$, and so

$$\mu \overline{\mu}(f) = \mu(\overline{U}\overline{\mu}(f)) = \mu(\overline{U})\overline{\mu}(f).$$

Thus, $\mu \overline{\mu} = \mu(\overline{U})\overline{\mu}$, which means obviously that M is a left ideal of F^*.

For statement (2), let $\mu \in L^1(G)^{\ast\ast}$ and $f \in L^\infty(G)$. Then $(\mu \overline{\mu})(f) = \mu(f\overline{\mu})$, where

$$f\overline{\mu}(\phi) = \overline{\mu}(\phi \ast f) = U(\phi)\overline{\mu}(f),$$

and

$$U(\phi) = \int_G U(s)\phi(s)d\lambda(s) = \int_G \overline{U}(s)\phi(s)d\lambda(s) = \overline{U}(\phi) \text{ for all } \phi \in L^1(G).$$

Thus, $(\mu \overline{\mu})(f) = \mu(f\overline{\mu}) = \mu(\overline{U})\overline{\mu}$, and so M is a left ideal of $L^1(G)^{\ast\ast}$. That M is of dimension less or equal to n is clear in each case.

Suppose now that U is irreducible, and let us prove that M is minimal. We start with the algebra F^*. Let $\mu \in M$ be arbitrary, and write $\mu = \sum_{i=1}^n x_i \mu_i = \overline{\mu} = \overline{x}_\mu$, where $\overline{x} = (x_1, x_2, ..., x_n)$ is a non-zero vector of \mathbb{C}^n. For each vector $\overline{y} \in \mathbb{C}^n$, we can find $s_1, s_2, ..., s_k$ in G and $\alpha_1, \alpha_2, ..., \alpha_k$ in \mathbb{C} such that

$$\sum_{i=1}^n \alpha_i \overline{U}(s_i)\overline{y} = \overline{y}$$

since \overline{U} is also irreducible. It follows that

$$\sum_{i=1}^n \alpha_i e(s_i)\mu = \sum_{i=1}^n \alpha_i e(s_i)(\overline{\mu} \overline{x}) = \sum_{i=1}^n \alpha_i (e(s_i)\overline{\mu})\overline{x}$$

$$= \sum_{i=1}^n \alpha_i (\overline{U}(s_i)\overline{\mu})\overline{x} = \sum_{i=1}^n \alpha_i (\overline{U}(s_i)\overline{x})\overline{\mu} = \overline{y} \overline{\mu}$$
(remember that \(e(s) \in F^* \) and \(e(s)(f) = f(s) \) for \(s \in G \) and \(f \in F \)). This means first that \(F^* \mu = M \), and so \(M \) is minimal. Secondly, if \(\overline{g} \in \mathbb{C}^n \) is such that \(\overline{g}_\mu \neq 0 \), then this argument shows also that

\[
\sum_{i=1}^n \alpha_i e(s_i)\overline{\mu} = \overline{g}_\mu \neq 0,
\]

and implies that \(\overline{\mu} \neq 0 \). So the elements \(\mu_1, \mu_2, ..., \mu_n \) are linearly independent and \(M \) is of dimension \(n \).

In \(L^1(G)^{**} \), the corresponding representation \(U : L^1(G) \rightarrow \mathbb{C}^n, f \rightarrow \overline{f} \) is also irreducible, and so we can find, for each \(\overline{g} \in \mathbb{C}^n \), \(\phi \in L^1(G) \) such that \(U(\phi)\overline{f} = \overline{g} \). As above, this shows that \(M \) is minimal and is of dimension \(n \).

Remark. Statement (1) means that \(G \) needs to be amenable if \(F = LUC(G) \).

Theorem 2. Let \(A \) be \(L^1(G), M(G) \) or \(F^* \), and let \(M \) be a left ideal of \(A \) of dimension \(n \). Then there exist \(m \) vectors \(\mu^i \in A^n \) and \(m \) irreducible, unitary, bounded and continuous representations \(U^i \) \((i = 1,2,...,m)\) of \(G \) such that

1. each \(\mu^i \) is \(U^i \)-invariant,
2. for each \(i = 1,2,...,m \), the coordinates of \(\mu^i \) span a minimal left ideal \(M_i \) of \(A \) of dimension \(n_i \), and
3. \(M = M_1 \oplus M_2 \oplus ... \oplus M_m \).

Proof. In the case of \(A = L^1(G) \), we regard \(M \) as a left ideal of \(M(G) \). This is possible because \(M \) is closed and \(L^1(G) \) is a closed ideal of \(M(G) \). We start with a set of elements \(\mu_1, \mu_2, ..., \mu_n \) which generate \(M \), and let \(\bar{\mu} = (\mu_i)_{i=1}^n \). Then, for each \(\mu \in A \) and for each \(i = 1, 2, ..., n \), there exist \(\alpha_{i1}(\mu), \alpha_{i2}(\mu), ..., \alpha_{in}(\mu) \in \mathbb{C} \) such that

\[
\mu \mu_i = \alpha_{i1}(\mu)\mu_1 + \alpha_{i2}(\mu)\mu_2 + ... + \alpha_{in}(\mu)\mu_n.
\]

Put \(A(\mu) = (\alpha_{ij}(\mu))_{i,j=1}^n \). Then, for \(\mu \) and \(\nu \) in \(A \),

\[
A(\mu \nu)\bar{\mu} = (\mu \nu) A(\mu) = A(\nu)(\mu \bar{\mu}) = A(\nu)A(\mu)\bar{\mu}.
\]

Hence, \(A(\mu \nu) = A(\nu)A(\mu) \), i.e., \(A \) is an antirepresentation of \(A \). Moreover, for each \(1 \leq j \leq n \), let \(f \in \mathcal{F} \) be such that \(\mu_j(f) = 1 \) and \(\mu_k(f) = 0 \) for \(k \neq j \). Then, for each \(1 \leq i \leq n \), \(\mu_\mu_i(f) = a_{ij}(\mu) \), so

\[
|a_{ij}(\mu)| \leq \|\mu_\mu_i\||f|| \leq \|\mu\| \|\mu_i\||f||,
\]

which implies that \(A \) is bounded. Since the product in \(A \) is \(\sigma(A, \mathcal{F}) \)-continuous on the left side, one can also see that the functions \(\mu \mapsto a_{ij}(\mu) \) are \(\sigma(A, \mathcal{F}) \)-continuous. When \(A = L^1(G) \), we let \(B \) be the antirepresentation of \(G \) associated to \(A \); and when \(\mathcal{F} = F \) is an amenable subspace of \(C(G) \), we let

\[
V(s) = (a_{ij}(e(s)))_{i,j=1}^n.
\]

Then \(\overline{V} \) is a bounded and continuous representation of \(G \) in each case. Furthermore, for \(f \in \mathcal{F} \), we have

\[
\bar{\mu}(f) = e(s)\bar{\mu}(f) = A(e(s))\bar{\mu}(f) = V(s)\bar{\mu}(f),
\]

i.e., \(\bar{\mu} \) is \(\bar{V} \)-invariant. Now it is easy to verify (or see [1, Lemma 3]) that \(\bar{V} \) is in fact equivalent to a unitary representation \(U \) in the sense that \(P\bar{V}(s) = U(s)P \) for all \(s \in G \), where \(P \) is an invertible operator on \(\mathbb{C}^n \). (This result is also true for the infinite-dimensional representations when \(G \) is amenable; see [9] or [7].)
\(\tilde{\gamma} = P\tilde{\mu}.\) It is clear that the coordinates of \(\tilde{\gamma}\) also generate the ideal \(M.\) We have also
\[
\tilde{\gamma}(f_s) = P\tilde{\mu}(f_s) = PV(s)\tilde{\mu}(f) = \tilde{U}(s)P\tilde{\mu}(f) = \tilde{U}(s)\tilde{\gamma}(f),
\]
and so \(\tilde{\gamma}\) is \(U\)-invariant. Since \(U\) is unitary, it follows by [8, 21.40(a)] that \(U\) is a direct sum of continuous, irreducible representations \(U^1, U^2, \ldots, \) and \(U^m.\) This means that \(\mathbb{C}^n\) is the direct sum of some invariant subspaces \(H_i,\) and each \(U^i\) is the restriction of \(U\) to \(H_i (i = 1, 2, \ldots, m).\) For each \(f \in \mathcal{F},\) we write \(\tilde{\gamma}(f) = \sum_i \tilde{\mu}^i(f).\) Then
\[
\sum_{i=1}^m \tilde{\mu}^i(f_s) = \tilde{\gamma}(f_s) = \tilde{U}(s)\tilde{\gamma}(f) = \sum_{i=1}^m \tilde{U}^i(s)\tilde{\mu}^i(f).
\]
It follows that, for each \(i = 1, 2, \ldots, m,\) \(\tilde{\mu}^i(f_s) = \tilde{U}^i(s)\tilde{\mu}^i(f).\) This yields statement (1). Statement (2) follows from Theorem 1. Statement (3) is clear.

Remark. In \(L^1(G)^{**},\) the situation is slightly different. In fact, one can also produce finite-dimensional left ideals with the use of the right annihilators of \(L^1(G)^{**}.\) These are elements \(\mu\) in \(L^1(G)^{**}\) which satisfy \(L^1(G)^{**}\mu = \{0\};\) see [6]. In such a situation, the representation \(\tilde{V}\) is trivial in the proof above.

Theorem 3. Let \(M\) be a left ideal of \(L^1(G)^{**}\) of dimension \(n,\) and suppose that \(M\) contains \(l\) linearly independent right annihilators \(\gamma_1, \gamma_2, \ldots, \gamma_l\) of \(L^1(G)^{**}\). Then there exist \(m\) vectors \(\tilde{\mu}^i \in (L^1(G)^{**})^{n_i}\) and \(m\) irreducible, unitary, bounded and continuous representations \(U^i (i = 1, 2, \ldots, m)\) of \(G\) such that

1. each \(\tilde{\mu}^i\) is topologically \(U^i\)-invariant,
2. for each \(i = 1, 2, \ldots, m,\) the coordinates of \(\tilde{\mu}^i\) span a minimal left ideal \(M_i\) of \(L^1(G)^{**}\) of dimension \(n_i,\) and
3. \(M = \mathbb{C}\gamma_1 \oplus \mathbb{C}\gamma_2 \oplus \ldots \oplus \mathbb{C}\gamma_l \oplus M_1 \oplus M_2 \oplus \ldots \oplus M_m.\)

Proof. We take \(n - l\) linearly independent elements \(\mu_1, \mu_2, \ldots, \mu_{n-l}\) in \(M\) which are not right annihilators of \(L^1(G)^{**},\) let \(\tilde{\mu} = (\mu_i)_{i=1}^{n-l}.\) Then, form the matrices \(A(\mu)\) such that \(A\tilde{\mu} = A(\mu)\tilde{\mu}\) for \(\mu \in L^1(G)^{**}\), restrict \(A\) to \(L^1(G),\) and let \(\tilde{V}\) be the corresponding representation of \(G.\) Then, for \(\phi \in L^1(G)\) and \(f \in L^\infty(G),\) we have
\[
\tilde{\mu}(\phi * f) = \tilde{\mu}(\hat{\phi} * f) = \hat{\phi} \tilde{\mu}(f) = A(\hat{\phi})\tilde{\mu}(f) = V(\hat{\phi})\tilde{\mu}(f) = \tilde{V}(\phi)\tilde{\mu}(f),
\]
and so \(\tilde{\mu}\) is topologically \(V\)-invariant. The proof is completed as that of Theorem 2.

Corollary. Let \(G\) be a locally compact group. Then

1. finite-dimensional (left) ideals exist in \(M(G)\) and \(L^1(G)\) if and only if \(G\) is compact,
2. finite-dimensional left ideals exist in \(LUC(G)^*\) if and only if \(G\) is amenable,
3. finite-dimensional left ideals which are not generated by right annihilators of \(L^1(G)^{**}\) exist in \(L^1(G)^{**}\) if and only if \(G\) is amenable.

Proof. This follows from Lemma 2 and Theorems 2 and 3.

Remark. The finite-dimensional right ideals in \(WAP(G)^*\) are determined in the same way because the two Arens product coincide in this case; see [2, Section 4.2]. When \(G\) is compact, one proceeds also in the same way to find these ideals in \(L^1(G)\) and \(M(G).\) These facts were already observed for the minimal right ideals in [1,
Section 4]. However, in [4, Remark 2.7(b)], we have proved that the non-trivial right ideals are all of infinite dimension in $LUC(\mathbb{Z})^* = \ell^\infty(\mathbb{Z})^*$, where \mathbb{Z} is the additive group of the integers. In [1, Section 4], we have given a class of locally compact abelian groups, which includes \mathbb{Z}, for which the non-trivial right ideals are all of infinite dimension in $LUC(G)^*$. Now we can prove that, for a locally compact abelian group G, the finite-dimensional right ideals exist in $LUC(G)^*$ if and only if G is compact. We hope to publish this result in another paper.

The author wishes to thank the referee for the very careful reading the paper was given.

References

