Finite-dimensional left ideals in some algebras associated with a locally compact group
HTML articles powered by AMS MathViewer
- by M. Filali
- Proc. Amer. Math. Soc. 127 (1999), 2325-2333
- DOI: https://doi.org/10.1090/S0002-9939-99-04793-0
- Published electronically: April 9, 1999
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group, let $L^{1}(G)$ be its group algebra, let $M(G)$ be its usual measure algebra, let $L^{1}(G)^{**}$ be the second dual of $L^{1}(G)$ with an Arens product, and let $LUC(G)^{*}$ be the conjugate of the space $LUC(G)$ of bounded, left uniformly continuous, complex-valued functions on $G$ with an Arens-type product. We find all the finite-dimensional left ideals of these algebras. We deduce that such ideals exist in $L^{1}(G)$ and $M(G)$ if and only if $G$ is compact, and in $L^{1}(G)^{**}$ (except those generated by right annihilators of $L^{1}(G)^{**}$) and $LUC(G)^{*}$ if and only if $G$ is amenable.References
- J. W. Baker and M. Filali, Minimal ideals in group algebras and their biduals, Math. Proc. Cambridge Philos. Soc. 120 (1996), 475–488.
- John F. Berglund, Hugo D. Junghenn, and Paul Milnes, Analysis on semigroups, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1989. Function spaces, compactifications, representations; A Wiley-Interscience Publication. MR 999922
- M. Filali, The ideal structure of some Banach algebras, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 567–576. MR 1151333, DOI 10.1017/S0305004100075642
- M. Filali, Linear equations in $B(\mathbf Z)$, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 6, 1001–1009. MR 1263900, DOI 10.1017/S030821050002967X
- M. Filali, Minimal left ideals in the group algebra and its second conjugate, Mathematica Japonica (to appear).
- Edmond E. Granirer, The radical of $L^{\infty }(G)^{\ast }$, Proc. Amer. Math. Soc. 41 (1973), 321–324. MR 326302, DOI 10.1090/S0002-9939-1973-0326302-9
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- B. Sz.-Nagy, Uniformly bounded linear transformations in Hilbert space, Acta Math. (Szeged) 11 (1947), 152–157.
Bibliographic Information
- M. Filali
- Affiliation: Department of Mathematical Sciences, University of Oulu, SF 90570 Finland
- MR Author ID: 292620
- Email: mfilali@cc.oulu.fi
- Received by editor(s): October 28, 1997
- Published electronically: April 9, 1999
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2325-2333
- MSC (1991): Primary 43A10, 22D15
- DOI: https://doi.org/10.1090/S0002-9939-99-04793-0
- MathSciNet review: 1487366