Integral representation formula for generalized normal derivations
HTML articles powered by AMS MathViewer
- by Danko R. Jocić
- Proc. Amer. Math. Soc. 127 (1999), 2303-2314
- DOI: https://doi.org/10.1090/S0002-9939-99-04802-9
- Published electronically: April 8, 1999
- PDF | Request permission
Abstract:
For generalized normal derivations, acting on the space of all bounded Hilbert space operators, the following integral representation formulas hold: \begin{equation} f(A)X-Xf(B)=\int _{ \sigma (A)}\int _{\sigma (B)}\frac {f(z)-f(w)}{z-w}\,E(dz)\,(AX-XB)F(dw), \end{equation} and \begin{eqnarray} {\|f(A)X-Xf(B)\|_2^2}\nonumber \ & & =\int _{ \sigma (A)}\int _{\sigma (B)}\left \vert \frac {f(z)-f(w)}{z-w}\right \vert ^2 \,\|E(dz)(AX-XB)F(dw)\|_2^2, \end{eqnarray} whenever $AX-XB$ is a Hilbert-Schmidt class operator and $f$ is a Lipschitz class function on $\sigma (A)\cup \sigma (B).$ Applying this formula, we extend the Fuglede-Putnam theorem concerning commutativity modulo Hilbert-Schmidt class, as well as trace inequalities for covariance matrices of Muir and Wong. Some new monotone matrix functions and norm inequalities are also derived.References
- T. Ando, Comparison of norms $|||f(A)-f(B)|||$ and $|||f(|A-B|)|||$, Math. Z. 197 (1988), no. 3, 403–409. MR 926848, DOI 10.1007/BF01418338
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 71 (1978), no. 1, 113–114. MR 487554, DOI 10.1090/S0002-9939-1978-0487554-2
- M. Š. Birman, L. S. Koplienko, and M. Z. Solomjak, Estimates of the spectrum of a difference of fractional powers of selfadjoint operators, Izv. Vysš. Učebn. Zaved. Matematika 3(154) (1975), 3–10 (Russian). MR 0385597
- M.Sh. Birman, M.Z. Solomyak, Double operator Stiltjes integrals, (Russian), Problemi matematicheskoj fiziki, vyp 1, Izd. LGU, 33–76, 1966.
- M.Sh. Birman, M.Z. Solomyak, Double operator Stiltjes integrals II, (Russian), Problemi matematicheskoj fiziki, vyp 3, Izd. LGU, 81–88, 1968.
- M.Sh. Birman, M.Z. Solomyak, Double operator Stiltjes integrals III, (Russian), Problemi matematicheskoj fiziki, vyp 3, Izd. LGU, 27–53, 1969.
- M.Sh. Birman and M.Z. Solomyak, Spektral’naya teoriya samosopryazhenni’h operatorov v Gil’bertovom prostranstve, (Russian), Izd-vo Leningr. Univ, 1980.
- Khristo N. Boyadzhiev, Some inequalities for generalized commutators, Publ. Res. Inst. Math. Sci. 26 (1990), no. 3, 521–527. MR 1068864, DOI 10.2977/prims/1195170960
- Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators, Mathematics and its Applications, Vol. 9, Gordon and Breach Science Publishers, New York-London-Paris, 1968. MR 0394282
- Yu.L. Daleckij, M.G. Krein: Ustoichivost reshenij differenciyal’nih uravnenij v Banahovom prostranstve, Nauka, Moskva 1972.
- E. B. Davies, Lipschitz continuity of functions of operators in the Schatten classes, J. London Math. Soc. (2) 37 (1988), no. 1, 148–157. MR 921753, DOI 10.1112/jlms/s2-37.121.148
- J. Donoghue, Monotone matrix functions and analytic continuation, Berlin, Heidelberg, New York, Springer 1974.
- Yu.B. Farfarovskaya, Example of Lipschitz function of self-adjoint operators thet gives a nonnuclear increment under a nuclear perturbation, J. Soviet Math. 4 (1975), 426–433.
- L. Fialkow, A note on the operator $X\rightarrow AX-XB$, Trans. Amer. Math. Soc. 243 (1978), 147–168. MR 502900, DOI 10.1090/S0002-9947-1978-0502900-3
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Junichi Fujii, Fumio Kubo, and Kyoko Kubo, A parametrization between operator means, Math. Japon. 33 (1988), no. 2, 201–208. MR 944020
- Takayuki Furuta, A Hilbert-Schmidt norm inequality associated with the Fuglede-Putnam theorem, Ark. Mat. 20 (1982), no. 1, 157–163. MR 660134, DOI 10.1007/BF02390507
- Israel Gohberg, Seymour Goldberg, and Marinus A. Kaashoek, Classes of linear operators. Vol. I, Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag, Basel, 1990. MR 1130394, DOI 10.1007/978-3-0348-7509-7
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1994. Corrected reprint of the 1991 original. MR 1288752
- Danko Jocić and Fuad Kittaneh, Some perturbation inequalities for self-adjoint operators, J. Operator Theory 31 (1994), no. 1, 3–10. MR 1316979
- Danko R. Jocić, A Hilbert-Schmidt norm equality associated with the Fuglede-Putnam-Rosenblum’s type theorem for generalized multipliers, J. Operator Theory 30 (1993), no. 1, 31–40. MR 1302605
- Danko R. Jocić, Norm inequalities for self-adjoint derivations, J. Funct. Anal. 145 (1997), no. 1, 24–34. MR 1442157, DOI 10.1006/jfan.1996.3004
- D.R. Jocić, Cauchy-Schwarz and means inequalities for elementary operators into norm ideals, Proc. Amer. Math. Soc. 126 (1998), 2705–2711.
- Fuad Kittaneh, On Lipschitz functions of normal operators, Proc. Amer. Math. Soc. 94 (1985), no. 3, 416–418. MR 787884, DOI 10.1090/S0002-9939-1985-0787884-4
- Man Kam Kwong, Some results on matrix monotone functions, Linear Algebra Appl. 118 (1989), 129–153. MR 995371, DOI 10.1016/0024-3795(89)90577-6
- W. W. Muir, Inequalities concerning the inverses of positive definite matrices, Proc. Edinburgh Math. Soc. (2) 19 (1974/75), no. 2, 109–113. MR 0401806, DOI 10.1017/s001309150001021x
- Ritsuo Nakamoto, A characterization of normal operators using the Hilbert-Schmidt class, Proc. Amer. Math. Soc. 79 (1980), no. 2, 343–344. MR 565369, DOI 10.1090/S0002-9939-1980-0565369-3
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- M. Rosenblum, On a theorem of Fuglede and Putnam, J. London Math. Soc. 33 (1958), 376–377. MR 99598, DOI 10.1112/jlms/s1-33.3.376
- Victor Shulman, Some remarks on the Fuglede-Weiss theorem, Bull. London Math. Soc. 28 (1996), no. 4, 385–392. MR 1384827, DOI 10.1112/blms/28.4.385
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149
- Dan Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators, J. Operator Theory 2 (1979), no. 1, 3–37. MR 553861
- Gary Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. I, Trans. Amer. Math. Soc. 246 (1978), 193–209. MR 515536, DOI 10.1090/S0002-9947-1978-0515536-5
- Gary Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory 5 (1981), no. 1, 3–16. MR 613042
- Gary Weiss, An extension of the Fuglede commutativity theorem modulo the Hilbert-Schmidt class to operators of the form $\sum M_{n}XN_{n}$, Trans. Amer. Math. Soc. 278 (1983), no. 1, 1–20. MR 697058, DOI 10.1090/S0002-9947-1983-0697058-6
- Chi Song Wong, Matrix derivatives and its applications in statistics, J. Math. Psych. 22 (1980), no. 1, 70–81. MR 593093, DOI 10.1016/0022-2496(80)90047-4
Bibliographic Information
- Danko R. Jocić
- Affiliation: University of Belgrade, Faculty of Mathematics, Studentski trg 16, P. O. Box 550, 11000 Belgrade, Yugoslavia
- Email: jocic@matf.bg.ac.yu
- Received by editor(s): January 2, 1997
- Received by editor(s) in revised form: October 28, 1997
- Published electronically: April 8, 1999
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2303-2314
- MSC (1991): Primary 47A13, 47B10, 47B15, 47B47, 47B49; Secondary 47A30, 47A60
- DOI: https://doi.org/10.1090/S0002-9939-99-04802-9
- MathSciNet review: 1486737