Equivalence relations and distances between Hilbert frames
HTML articles powered by AMS MathViewer
- by Radu Balan
- Proc. Amer. Math. Soc. 127 (1999), 2353-2366
- DOI: https://doi.org/10.1090/S0002-9939-99-04826-1
- Published electronically: April 8, 1999
- PDF | Request permission
Abstract:
We study some equivalency relations between Hilbert frames and closed subspaces of $l^2( \mathbf {I})$. We define also a distance between frames and we establish the geometric meaning of this metric. Finally we find the closest and respectively the nearest tight frame to a given frame.References
- Akram Aldroubi, Portraits of frames, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1661–1668. MR 1242070, DOI 10.1090/S0002-9939-1995-1242070-5
- S. Twareque Ali, J.-P. Antoine, and J.-P. Gazeau, Continuous frames in Hilbert space, Ann. Physics 222 (1993), no. 1, 1–37. MR 1206084, DOI 10.1006/aphy.1993.1016
- O.Christensen, Frame Decomposition in Hilbert Spaces, Ph.D. Thesis (1993) http@tyche.mat.univie.ac.at
- Ole Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2199–2201. MR 1246520, DOI 10.1090/S0002-9939-1995-1246520-X
- O.Christensen, C.Heil, Perturbations of Banach Frames and Atomic Decompositions, Math.Nach., 185 (1997), 33–47 or http@tyche.mat.univie.ac.at.
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- D.Han, D.R.Larson, Frames, Bases and Group Representations, preprint 1997
- James R. Holub, Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc. 122 (1994), no. 3, 779–785. MR 1204376, DOI 10.1090/S0002-9939-1994-1204376-4
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
- Amos Ron and Zuowei Shen, Frames and stable bases for shift-invariant subspaces of $L_2(\mathbf R^d)$, Canad. J. Math. 47 (1995), no. 5, 1051–1094. MR 1350650, DOI 10.4153/CJM-1995-056-1
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684
Bibliographic Information
- Radu Balan
- Affiliation: Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 356464
- Email: rvbalan@math.princeton.edu
- Received by editor(s): October 31, 1997
- Published electronically: April 8, 1999
- Additional Notes: The author is grateful to Ingrid Daubechies for the many hours of working together and for the continuous support and encouragement. He also thanks David Larson for a copy of his paper.
- Communicated by: David R. Larson
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2353-2366
- MSC (1991): Primary 42C99, 46C99
- DOI: https://doi.org/10.1090/S0002-9939-99-04826-1
- MathSciNet review: 1600096