BCL INDEX AND FREDHOLM TUPLES

RONGWEI YANG

(Communicated by Theodore W. Gamelin)

Abstract. In this paper we will prove that the BCL index for \(C^* \)-algebras generated by two essentially doubly commuting isometries is equal to the index of the Fredholm tuples formed by these two isometries. We will then compute this index for certain sub-Hardy modules over the bidisk. Some interesting corollaries are also listed.

0. Introduction

In [BCL], Berger, Coburn and Lebow made a study of the \(C^* \)-algebra generated by commuting isometries. In section 5 of their paper, the authors were able to define an index for the \(C^* \)-algebra generated by two essentially doubly commuting isometries. They conjectured that this index is a unitary invariant for the algebra and various cases were discussed in detail.

In the first two sections of this paper, we will compute the index and show that it is equal to the index of a specific Fredholm tuple. In section 3 we will compute the index for certain sub-Hardy modules over the bidisk.

We begin by introducing some notations and a lemma from [BCL].

Let \(H \) be a separable Hilbert space and \(V_1, V_2 \) be two commuting isometries acting on \(H \). \(H_0 \) is the subspace defined by

\[
H_0 := \{ x \in H : x = (V_1 V_2)^n y_n \text{ for all } n > 0 \} = \bigcap_{n=1}^{\infty} (V_1 V_2)^n H.
\]

Then \(H_0 \) reduces \(V_1 V_2 \) and \(H_0 \) is unitarily equivalent to \(H^2(T) \otimes H' \) where \(H^2(T) \) is the Hardy space and \(H' \) some separable Hilbert space, and \(V_1 V_2 \mid_{H^2(T)} \cong T_z \otimes I \) under this unitary equivalence. We have the following lemma from [BCL].

Lemma 0.1. If \(V_1, V_2 \) satisfy the hypotheses: \(H_0 = 0 \), \(H' \) infinite dimensional and the commutator \([V_2^*, V_1] \) compact, then for

\[
C(V_1, V_2) := [V_2^*, V_2](V_1 - I)[V_2^*, V_2],
\]

\(I + C(V_1, V_2) \) is either Fredholm or semi-Fredholm of index \(-\infty\).
1. BCL INDEX

In this section, we will compute \(\text{ind}(I + C(V_1, V_2)) \) under the hypotheses of Lemma 0.1.

We first observe that \(V_1 \) essentially commutes with \([V_2^*, V_2] \) and that

\[
[V_2^*, V_2]^2 = [V_2^*, V_2].
\]

Therefore,

\[
\text{ind}(I + C(V_1, V_2)) = \text{ind}(I + (V_1 - I)[V_2^*, V_2]^2)
= \text{ind}(I + (V_1 - I)[V_2^*, V_2]).
\]

We let \(D \) denote the operator \(I + (V_1 - I)[V_2^*, V_2] \).

Lemma 1.1. \(D(H) = V_1H + V_2H. \)

Proof. For any \(x \in H \),

\[
Dx = x + (V_1 - I)(I - V_2V_2^*)x
= x + (V_1 - I)x - (V_1 - I)V_2V_2^*x = V_1x - V_2(V_1 - I)V_2^*x.
\]

This implies that

\[
D(H) \subset V_1H + V_2H.
\]

On the other hand,

\[
DV_2x = V_2x + (V_1 - I)V_2x - (V_1 - I)V_2V_2^*V_2x
= V_2x + (V_1 - I)V_2x - (V_1 - I)V_2x = V_2x.
\]

This shows that \(V_2(H) \subset D(H) \). Furthermore,

\[
Dx + V_2(V_1 - I)V_2^*x = x + (V_1 - I)x = V_1x.
\]

So \(V_1(H) \subset D(H) \) and hence, \(V_1H + V_2H \subset D(H) \).

By (1-1), the kernel of \(D \) are the solutions of the equation

\[
(1-2) \quad V_1x = (V_1 - I)V_2V_2^*x.
\]

Suppose \(x \) is a solution of this equation. We write

\[
x = x_1 + x_2
\]

with \(x_1 \in H \ominus V_2H \) and \(x_2 \in V_2H \). Then,

\[
V_1x = V_1(x_1 + x_2) = (V_1 - I)V_2V_2^*x_1 + (V_1 - I)V_2V_2^*x_2
= (V_1 - I)V_2V_2^*x_1 + (V_1 - I)x_2.
\]

This implies that

\[
V_1x_1 = (V_1 - I)V_2V_2^*x_1 - x_2,
\]

and hence,

\[
(1-3) \quad x_2 = (V_1 - I)V_2V_2^*x_1 - V_1x_1,
\]

in particular, \(V_1x_1 \in V_2(H) \) and \(x_2 \) is uniquely determined by \(x_1 \). Conversely, let \(x_1 \) be in \(H \ominus V_2(H) \) such that \(V_1x_1 \in V_2(H) \). We let \(x_2 \) be determined by equation

\[
V_1x_1 = (V_1 - I)V_2V_2^*x_1 - x_2,
\]
(1-3) and \(x = x_1 + x_2 \). One sees that \(x_2 \in V_2(H) \) and that
\[
\begin{align*}
(V_1 - I)V_2V_2^*x &= (V_1 - I)V_2V_2^*(x_1 + x_2) \\
&= (V_1 - I)V_2V_2^*x_1 + (V_1 - I)x_2 \\
&= (V_1 - I)V_2V_2^*x_1 + (V_1 - I)((V_1 - I)V_2V_2^*x_1 - V_1x_1) \\
&= (V_1 - I)V_2V_2^*x_1 + (V_1 - I)V_2V_2^*x_1 - (V_1 - I)V_1x_1 \\
&= V_1[x_1 + (V_1 - I)V_2V_2^*x_1 - V_1x_1] \\
&= V_1(x_1 + x_2) = V_1x.
\end{align*}
\]
Combining all these observations we have the following:

Lemma 1.2. The projection from \(H \) onto \(H \oplus V_2(H) \) induces an invertible map from \(\text{Ker}(D) \) to the space
\[
H_1 := \{ x \in H \oplus V_2(H) : V_1x \in V_2(H) \}.
\]

Combining Lemmas 0.1, 1.1 and 1.2 we have

Theorem 1.3. Suppose \(V_1, V_2 \) are isometries satisfying the hypotheses in Lemma 0.1, then \(\dim H_1 < \infty \) and
\[
\text{ind}(I + C(V_1, V_2)) = \text{ind}(D) = \dim H_1 - \dim (H \oplus (V_1(H) + V_2(H))).
\]

Though it seems that this index is dependent on the order of the pair \((V_1, V_2) \), it is actually not. In fact, if we let
\[
H_2 := \{ x \in H \oplus V_1(H) : V_2x \in V_1(H) \},
\]
then one can check easily that \(V_2^*V_1 \) is unitary from \(H_1 \) to \(H_2 \) and thus, \(\dim H_1 = \dim H_2 \).

2. Fredholm tuples

Let \(a, b \) be two commuting isometries acting on \(H \) and \(d_1 \) be the map from \(H \) to \(H \oplus H \), such that
\[
d_1x = (-bx, ax), \quad x \in H;
\]
and \(d_2 \) the map from \(H \oplus H \) to \(H \) such that
\[
d_2(x, y) = ax + by, \quad x, y \in H.
\]
Then one checks that
\[
d_2d_1 = 0.
\]
We consider the following short sequence:
\[
0 \rightarrow H \xrightarrow{d_1} H \oplus H \xrightarrow{d_2} H \rightarrow 0.
\]

The tuple \((a, b)\) is called Fredholm if
\[
dim(\text{Ker}(d_1)) + \dim(\text{Ker}(d_2) \ominus d_1(H)) + \dim(H \ominus d_2(H \oplus H)) < +\infty
\]
and is called semi-Fredholm if no more than one of the homology spaces is infinite dimensional. The index of the tuple \((a, b)\) is defined by
\[
(2-1) \quad \text{ind}(a, b) := -\dim(\text{Ker}(d_1)) + \dim(\text{Ker}(d_2) \ominus d_1(H)) - \dim(H \ominus d_2(H \oplus H)).
\]
Now we have a look at the case when \(a, b \) are both isometries. It is not hard to see that \(\text{Ker}(d_1) = 0 \) and \(d_2(H \oplus H) = a(H) + b(H) \).
Lemma 2.1.

(2-2) \(\text{Ker}(d_2) \ominus d_1(H) = \{ (x, -b^* ax) : x \in H \ominus b(H) \text{ and } ax \in b(H) \} \).

Proof. First of all, if \(x \) is as in the right-hand side of (2-2), then

\[
d_2(x, -b^* ax) = ax - bb^*ax = ax - ax = 0,
\]

and for any \(y \in H \),

\[
\langle (x, -b^* ax), d_1 y \rangle = \langle x, -by \rangle + \langle -b^* ax, ay \rangle = \langle x, -by \rangle - \langle ax, bay \rangle = \langle x, -by \rangle - \langle ax, aby \rangle = -2 \langle x, by \rangle = 0.
\]

This shows that the right-hand side of (2-2) is contained in the left-hand side. On the other hand, if \((x, z)\) is an element of the left-hand side, then

\[
0 = d_2(x, z) = ax + bz,
\]

and hence, \(z = -b^* ax \). That \(x \) is in \(H \ominus b(H) \) is also implied by (2-3). \(\square \)

Lemma 2.1 and Theorem 1.3 together imply the following

Theorem 2.2. If \(V_1, V_2 \) are two commuting isometries that satisfy the hypotheses in Lemma 0.1, then the tuple \((V_1, V_2)\) is semi-Fredholm and

\[
\text{ind}(I + C(V_1, V_2)) = \text{ind}(V_1, V_2).
\]

3. Fredholm tuples on sub-Hardy modules

Let \(H^2(T^2) \) denote the Hardy space over the torus. It is well known that it is an \(A(D^2) \) module, where \(A(D^2) \) stands for the bidisc algebra. A submodule of \(H^2(T^2) \) is a closed subspace that is invariant under the module action by \(A(D^2) \). For any \(h \in H^2(T^2) \), we let \([h]\) denote the submodule generated by \(h \) and \(H^2(T^2) \ominus [h] \) denote the quotient module. For any submodule \(H \), \(R_1 \) and \(R_2 \) will denote the restrictions of the multiplications by the coordinate functions \(z_1 \) and \(z_2 \) to \(H \). One sees that \(R_1, R_2 \) are commuting isometries. When \(H \) is generated by a finite number of polynomials, a result in [Ya] shows that the commutator \([R_1^*, R_2]\) is Hilbert-Schmidt. Therefore, \(R_1, R_2 \) satisfy the hypotheses of Lemma 0.1. In this section we will make a study of the tuple \((R_1, R_2)\).

Lemma 3.1. If \(H \subset H^2(T^2) \) is a submodule, then

\[
\text{rank}(H) \geq \text{dim}(H \ominus (z_1 H + z_2 H)).
\]

Proof. Suppose \(\text{rank}(H) = k < \infty \). Then we can choose \(f_1, f_2, \ldots, f_k \) such that \(H = [f_1, f_2, \ldots, f_k] \). If \(\text{rank}(H) < \text{dim}(H \ominus (z_1 H + z_2 H)) \), we can find a non-zero \(f \in H \ominus (z_1 H + z_2 H) \) such that it is orthogonal to \(pf \) for each \(j \), where \(p \) is the projection from \(H \) to \(H \ominus (z_1 H + z_2 H) \). This will imply that \(f \) is orthogonal to each \(f_j \) and hence it is orthogonal to \(f_j(z_1, z_2)p(z_1, z_2) = f_j(z_1, z_2)p(0,0) + f_j(z_1, z_2)(p(z_1, z_2) - p(0,0)) \) for every polynomial \(p \). In other words, \(f \) is orthogonal to \(H \) which is impossible unless \(f = 0 \). \(\square \)

While it is not hard to see that the equality in Lemma 3.1 holds when \(H \) is singly generated, we are unable to find a tool to handle the problem in general. But we believe the equality in Lemma 3.1 is true at least for some other nicely generated submodules if not for all.
Conjecture. The equality in Lemma 3.1 holds for every submodule generated by polynomials.

We will study this conjecture at a later time.

Corollary 3.2. If \(H \) is generated by finitely many polynomials, then \((R_1, R_2)\) is Fredholm on \(H \) and \(\text{ind}(R_1, R_2) = -1 \).

Proof. First of all \([R_1^*, R_2]\) is compact by Corollary 6.2 in [Ya]. One checks further that \((R_1, R_2)\) satisfies the conditions in Lemma 0.1. The semi-Fredholmness of \((R_1, R_2)\) is then implied by Theorem 2.2.

We now assume that \(H \) is generated by one polynomial, say \(h \). Then by Lemma 3.1 it is not hard to see that \(\dim(H \ominus (z_1 H + z_2 H)) = 1 \).

So by Theorems 1.3 and 2.2, it suffices to show that \(H_1 = 0 \). In fact, if \(f \in H_1 \), we can write \(f = hg \) for some holomorphic function \(g \). Then,

\[
z_1hg = z_2h\phi
\]

for some \(h\phi \in H \). Therefore,

\[
z_1g = z_2\phi;
\]

hence, \(g \) has the factor \(z_2 \) which implies that \(f \) is also in \(z_2 H \) and this is possible only if \(f = 0 \).

If \(H \) is generated by \(k \) polynomials, say \(h_1, h_2, \ldots, h_k \), then \([G] \ominus H\) is finite dimensional following from Lemma 6.1 in [Ya], where \(G = \text{GCD}(h_1, h_2, \ldots, h_k) \) and \([G] \) denotes the sub-module generated by \(G \). This means that the tuple \((R_1, R_2)\) on \(H \) is a compact perturbation of the tuple \((R_1, R_2)\) on \([G]\) and therefore, these two tuples have the same index.

It is possible to give a more direct proof of this corollary by a study of the \(C^* \)-algebra generated by the two commuting isometries \(R_1 \) and \(R_2 \). Interested readers may find useful tools in [BCL] and [Do] to this end.

Let \(H \) be any submodule of \(H^2(T^2) \) and let \(q : H^2(T^2) \to H^2(T^2) \ominus H \) be the projection onto the quotient space. \(H^2(T^2) \ominus H \) is the quotient \(A(D^2) \) module with the module action of \(A(D^2) \) on \(H^2(T^2) \) compressed by \(q \); more specifically,

\[
f \cdot x := qfx,
\]

where \(f \in A(D^2) \) and \(x \in H^2(T^2) \ominus H \).

We let \(S_1 := qz_1 \), \(S_2 := qz_2 \). It is then easy to see how the tuple \((S_1, S_2)\) on \(H^2(T^2) \ominus H \) is related to the tuple \((R_1, R_2)\) on \(H \). The following part of this paper is devoted to this question.

Let \(H \) be any submodule of \(H^2(T^2) \) and \(H_1, H_2 \) be as in section 1.

Lemma 3.3. \(\varpi_2 H_1 = \varpi_1 H_2 \).

Proof. First of all, from the definition of \(H_1, H_2 \), it is not hard to see that

\[
\varpi_2 H_1 \subset H^2(T^2); \quad \varpi_1 H_2 \subset H^2(T^2).
\]

By the remarks that immediately follow Theorem 1.3 we also have that

\[
z_1 \varpi_2 H_1 = \varpi_2 z_1 H_1 = H_2.
\]

Therefore,

\[
\varpi_1 H_2 = \varpi_2 H_1.
\]
If we denote \(\overline{\pi_2}H_1 \) by \(E \), then \(\dim E = \dim H_1 = \dim H_2 \). The following proposition gives a more concrete description of the space \(E \).

Proposition 3.4. \(E = \text{Ker}(S_1) \cap \text{Ker}(S_2) \).

Proof. We let \(q : H^2(T^2) \to H^2(T^2) \oplus H \) be the projection. Then,
\[
S_1 = qz_1; \quad S_2 = qz_2.
\]
Therefore,
\[
S_1(E) = qz_1(\overline{\pi_2}H_2) = q(H_2) = 0; \quad S_2(E) = qz_2(\overline{\pi_2}H_1) = q(H_1) = 0.
\]
Conversely, if \(f \in \text{Ker}(S_1) \cap \text{Ker}(S_2) \), then
\[
S_1f = S_2f = 0.
\]
This implies that \(z_1f, z_2f \) are both in \(H \). Since \(f \) is orthogonal to \(H \), we actually have that
\[
z_1f \in H \oplus z_1H; \quad z_2f \in H \oplus z_2H.
\]
Furthermore,
\[
z_1z_2f = z_2z_1f \in z_1H \cap z_2H;
\]
hence, \(z_1f \in H_2 \) and \(z_2f \in H_1 \), i.e.,
\[
f \in E = \overline{\pi_1}H_2 = \overline{\pi_2}H_1.
\]
\[\square \]

Corollary 3.5. If \(H \) is a submodule such that \([R_1^*, R_2]\) is compact on \(H \), then \(\dim(\text{Ker}(S_1) \cap \text{Ker}(S_2)) < \infty \) and
\[
\text{ind}(R_1, R_2) = \dim(\text{Ker}(S_1) \cap \text{Ker}(S_2)) - \dim(\text{Ker}(R_1^*) \cap \text{Ker}(R_2^*)).
\]

Proof. This follows directly from Theorem 1.3, the above proposition and the fact that \(H \oplus (z_1H + z_2H) = \text{Ker}(R_1^*) \cap \text{Ker}(R_2^*) \).

\[\square \]

It would be very interesting to give a direct proof of this fact.

Lemma (Curto [Cu]). If \((a, b)\) is a doubly commuting tuple on \(H \), and \(v \) is a Fredholm operator on \(H \) that commutes with both \(a, b \), then \((va, b)\) is Fredholm if \((a, b)\) is.

Suppose \(\lambda = (\lambda_1, \lambda_2) \in D^2 \). We let
\[
\phi_1 = \frac{z_1 - \lambda_1}{1 - \overline{\lambda_1}z_1}, \quad \phi_2 = \frac{z_2 - \lambda_2}{1 - \overline{\lambda_2}z_2}.
\]
Then \(\phi_1, \phi_2 \) are inner functions in different variables, so \(R_{\phi_1} \) and \(R_{\phi_2} \) are two commuting isometries and \([R_{\phi_1}^*, R_{\phi_2}]\) is compact by [Ya], Lemma 1.3 and [Ya], Corollary 6.2 when \(H \) is generated by a finite number of polynomials. One further checks that \(R_{\phi_1}, R_{\phi_2} \) satisfy the hypotheses of Lemma 0.1. Hence, \((R_{\phi_1}, R_{\phi_2})\) is Fredholm by Theorems 1.3 and 2.2. Now we use this fact and Curto’s lemma to prove the following

Theorem 3.6. If \(H \) is a submodule generated by finitely many polynomials, then \(R_\lambda = (R_1 - \lambda_1, R_2 - \lambda_2) \) is Fredholm for any \(\lambda = (\lambda_1, \lambda_2) \in D^2 \) and \(\text{ind}(R_\lambda) = -1 \).
Proof. We observe that
\[R_{\phi_1} = (1 - \lambda_1 R_1)^{-1}(R_1 - \lambda_1); \quad R_{\phi_2} = (1 - \lambda_2 R_2)^{-1}(R_2 - \lambda_2). \]
Curto’s lemma and the remarks following it imply that \(R_\lambda = (R_1 - \lambda_1, R_2 - \lambda_2) \) is Fredholm. Furthermore, \(R_\lambda \) is connected to \((R_1, R_2)\) by the path \(R_{t\lambda}, 0 \leq t \leq 1. \) Hence,
\[\text{ind}(R_\lambda) = \text{ind}(R_1, R_2) = -1. \]
\[\square \]

Corollary 3.7. If \(H \) is a submodule generated by polynomials, then
\[\dim(Ker(S_1) \cap Ker(S_2)) = \dim(H \oplus (z_1 H + z_2 H)) - 1. \]
Proof. This follows easily from Theorem 1.3, Corollary 3.5 and the above theorem.
\[\square \]

Lemma 3.8. If \(H \) is a submodule and \(K = H^2(T^2) \oplus H, \) then
\[\dim(Ker(S_1) \cap Ker(S_2^*) < \infty; \dim(Ker(S_2) \cap Ker(S_1^*) < \infty. \]
Proof. We prove the first inequality.
Suppose \(f \) is any function in \(Ker(S_1) \cap Ker(S_2^*) \). First of all, \(\overline{z_2} f \) is orthogonal to \(H \) since \(f \) is in \(K \). On the other hand,
\[q \overline{z_2} f = S_2^* f = 0, \]
so \(\overline{z_2} f \) is also orthogonal to \(K \). This implies that \(\overline{z_2} f \) is orthogonal to \(H^2(T^2) \) which means that \(f \) belongs in \(H^2(T^2) \oplus z_2 H^2(T^2) \). In other words, \(f \) is independent of \(z_2 \) and hence \(z_1 f \) is also in \(H^2(T^2) \oplus z_2 H^2(T^2) \).
Furthermore, since \(S_1 f = 0, \) one checks easily that \(z_1 f \in H \oplus z_1 H \). Now assume \(\{f_n : n = 1, 2, ..., l\} (l \text{ can be } \infty) \) is an orthogonal basis for \(Ker(S_1) \cap Ker(S_2^*) \). The arguments above say that for each \(n, \)
\[z_1 f_n \subset (H \oplus z_1 H) \cap (H^2(T^2) \oplus z_2 H^2(T^2)). \]
Assume \(N_\lambda \) is a mapping from \(H^2(T^2) \) to \(H^2(T) \) such that for any \(f(z, w) = \sum_{k=0}^{\infty} f_k(z)w^k \in H^2(T^2), \)
\[N_\lambda f(z) = f(z, \lambda). \]
By Corollary 1.2 in [Ya], \(N_\lambda \) is Hilbert-Schmidt on \(H \oplus z_1 H \). And by the previous remarks, \(z_1 f_n \) is independent of \(z_2 \) for each \(n \). Therefore,
\[N_\lambda(z_1 f_n) = z_1 f_n, \]
and
\[\infty > \sum_{n=1}^{l} \|N_\lambda(z_1 f_n)\|^2 = \sum_{n=1}^{l} \|(z_1 f_n)\|^2 = \sum_{n=1}^{l} 1 = l. \]
\[\square \]

Proposition 3.9. If \([S_1^*, S_2]\) is compact on \(K = H^2(T^2) \oplus H, \) then the tuple \((S_1, S_2)\) is Fredholm on \(K \) if \((R_1, R_2)\) is Fredholm on \(H. \)
Proof. By Corollary 3.8 in [Cu], \((S_1, S_2)\) is Fredholm if and only if
\[
\tilde{S} := \begin{pmatrix}
S_1 & S_2 \\
-S_2^* & S_1^*
\end{pmatrix}
\]
is Fredholm on \(K \oplus K\). Since
\[
\tilde{S} \tilde{S}^* := \begin{pmatrix}
S_1 S_1^* + S_2 S_2^* & 0 \\
0 & S_1^* S_1 + S_2^* S_2
\end{pmatrix},
\]
we have that
\[
\text{Ker}(\tilde{S}^*) = (\ker(S_1^*) \cap \text{Ker}(S_2^*)) \oplus (\ker(S_1) \cap \text{Ker}(S_2)).
\]
If \((R_1, R_2)\) is Fredholm on \(H\), then
\[
dim(\text{Ker}(d_2) \ominus d_1(H)) < \infty
\]
by formula (2-1). But by Lemma 2.1,
\[
\text{Ker}(d_2) \ominus d_1(H) = H_1;
\]
Proposition 3.4 then implies that
\[
dim(\ker(S_1) \cap \text{Ker}(S_2)) < \infty.
\]
Furthermore, from the proof of Lemma 3.8,
\[
\text{Ker}(S_1^*) \subset H^2(T^2) \ominus z_1 H^2(T^2), \quad \text{Ker}(S_2^*) \subset H^2(T^2) \ominus z_2 H^2(T^2).
\]
Hence,
\[
\dim(\ker(S_1) \cap \text{Ker}(S_2)) \leq \dim(H^2(T^2) \ominus (z_1 H^2(T^2) + z_2 H^2(T^2))) = 1.
\]
So \(\dim(\text{Ker}(\tilde{S}^*))\) is finite.

We now deal with \(\text{Ker}(\tilde{S})\). First, one computes that
\[
\tilde{S}^* \tilde{S} := \begin{pmatrix}
S_1^* S_1 + S_2 S_2^* & S_1^* S_2 - S_2 S_1^* \\
S_2^* S_1 - S_1 S_2^* & S_1 S_1^* + S_2 S_2^*
\end{pmatrix}.
\]
But \([S_1^*, S_2]\), and hence \([S_2^*, S_1]\), is compact from the assumption, \(\text{Ker}(\tilde{S}^* \tilde{S})\) is finite dimensional if and only if
\[
A := \begin{pmatrix}
S_1^* S_1 + S_2 S_2^* & 0 \\
0 & S_1 S_1^* + S_2 S_2^*
\end{pmatrix}
\]
has finite dimensional kernel, but this is already implied by Lemma 3.8.

In conclusion, \(\tilde{S}\) is Fredholm on \(K \oplus K\) and so is \((S_1, S_2)\).

Corollary 3.10. If \(H\) is generated by polynomials, then the tuple \((S_1, S_2)\) is Fredholm on \(K = H^2(T^2) \ominus H\).

Proof. This follows directly from Corollary 6.2 in [Ya] and the above proposition.

It would be interesting to compute the index of the tuple \((S_1, S_2)\) and see how it is related to the \(C^\ast\)-algebra generated by \(S_1\) and \(S_2\).

Acknowledgement

The author thanks Prof. Ronald G. Douglas for many helpful discussions.
REFERENCES

Department of Mathematics, Texas A&M University, College Station, Texas 77843
E-mail address: ryang@math.tamu.edu

Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794