Fatou’s identity and Lebesgue’s convergence theorem
HTML articles powered by AMS MathViewer
- by Heinz-Albrecht Klei
- Proc. Amer. Math. Soc. 127 (1999), 2297-2302
- DOI: https://doi.org/10.1090/S0002-9939-99-05099-6
- Published electronically: April 9, 1999
- PDF | Request permission
Abstract:
The classical Fatou lemma for bounded sequences of nonnegative integrable functions is represented as an equality. A similar result is stated for measure convergent sequences. Neither result requires a uniform integrability assumption. For the latter a converse is proven. Two extensions of Lebesgue’s convergence theorem are presented.References
- Zvi Artstein, A note on Fatou’s lemma in several dimensions, J. Math. Econom. 6 (1979), no. 3, 277–282. MR 564197, DOI 10.1016/0304-4068(79)90013-2
- Robert J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 185073, DOI 10.1016/0022-247X(65)90049-1
- E. J. Balder, A unifying note on Fatou’s lemma in several dimensions, Math. Oper. Res. 9 (1984), no. 2, 267–275. MR 742262, DOI 10.1287/moor.9.2.267
- Erik J. Balder and Christian Hess, Fatou’s lemma for multifunctions with unbounded values, Math. Oper. Res. 20 (1995), no. 1, 175–188. MR 1320453, DOI 10.1287/moor.20.1.175
- L. Cesari and M. B. Suryanarayana, An existence theorem for Pareto problems, Nonlinear Anal. 2 (1978), no. 2, 225–233. MR 512285, DOI 10.1016/0362-546X(78)90068-8
- Werner Hildenbrand and Jean-François Mertens, On Fatou’s lemma in several dimensions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 151–155. MR 277681, DOI 10.1007/BF00538866
- Heinz-Albrecht Klei, Convergences faible, en mesure et au sens de Cesàro dans $L^1(\textbf {R})$, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 1, 9–12 (French, with English summary). MR 1172398
- Heinz-Albrecht Klei, Measure convergent sequences in Lebesgue spaces and Fatou’s lemma, Bull. Austral. Math. Soc. 54 (1996), no. 2, 197–202. MR 1411529, DOI 10.1017/S0004972700017652
- Heinz-Albrecht Klei, Convergence and extraction of bounded sequences in $L^1(\textbf {R})$, J. Math. Anal. Appl. 198 (1996), no. 3, 636–642. MR 1377816, DOI 10.1006/jmaa.1996.0104
- Heinz-Albrecht Klei and Mounia Miyara, Une extension du lemme de Fatou, Bull. Sci. Math. 115 (1991), no. 2, 211–221 (French, with English summary). MR 1101024
- J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. MR 210177, DOI 10.1007/BF02020976
- Czesław Olech, On $n$-dimensional extensions of Fatou’s lemma, Z. Angew. Math. Phys. 38 (1987), no. 2, 266–272 (English, with French summary). MR 885689, DOI 10.1007/BF00945411
- Frank H. Page Jr., Komlos limits and Fatou’s lemma in several dimensions, Canad. Math. Bull. 34 (1991), no. 1, 109–112. MR 1108937, DOI 10.4153/CMB-1991-017-3
- Hans Richter, Verallgemeinerung eines in der Statistik benötigten Satzes der Masstheorie, Math. Ann. 150 (1963), 85–90 (German). MR 146329, DOI 10.1007/BF01396583
- H. P. Rosenthal, Sous-espaces de $L^1$, lectures, University Paris VI, 1979.
- David Schmeidler, Fatou’s lemma in several dimensions, Proc. Amer. Math. Soc. 24 (1970), 300–306. MR 248316, DOI 10.1090/S0002-9939-1970-0248316-7
Bibliographic Information
- Heinz-Albrecht Klei
- Affiliation: Département de Mathématiques et Informatique, Université de Reims, Moulin de la Housse, B.P. 1039, 51687 Reims Cedex 2, France
- Email: heinz.klei@univ-reims.fr
- Received by editor(s): October 27, 1997
- Published electronically: April 9, 1999
- Communicated by: Frederick W. Gehring
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2297-2302
- MSC (1991): Primary 26D15, 28A20, 28A25
- DOI: https://doi.org/10.1090/S0002-9939-99-05099-6
- MathSciNet review: 1636974