Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The mod 2 cohomology of the linear groups over the ring of integers
HTML articles powered by AMS MathViewer

by Dominique Arlettaz, Mamoru Mimura, Koji Nakahata and Nobuaki Yagita PDF
Proc. Amer. Math. Soc. 127 (1999), 2199-2212 Request permission

Abstract:

This paper completely determines the Hopf algebra structure of the mod 2 cohomology of the linear groups $GL(\mathbb {Z})$, $SL(\mathbb {Z})$ and $St(\mathbb {Z})$ as a module over the Steenrod algebra, and provides an explicit description of the generators.
References
  • Dominique Arlettaz, Torsion classes in the cohomology of congruence subgroups, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 241–248. MR 974979, DOI 10.1017/S0305004100067724
  • Dominique Arlettaz, A note on the mod $2$ cohomology of $\textrm {SL}(\textbf {Z})$, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, pp. 365–370. MR 1133912, DOI 10.1007/BFb0084757
  • C. Ausoni: Propriétés homotopiques de la K-théorie algébrique des entiers, Ph.D. thesis, Université de Lausanne (1998).
  • A. Jon Berrick, An approach to algebraic $K$-theory, Research Notes in Mathematics, vol. 56, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649409
  • Marcel Bökstedt, The rational homotopy type of $\Omega \textrm {Wh}^{\textrm {Diff}}(\ast )$, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 25–37. MR 764574, DOI 10.1007/BFb0075562
  • Armand Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Mathematics, No. 36, Springer-Verlag, Berlin-New York, 1967. Lectures given at the University of Chicago, 1954; Notes by Edward Halpern. MR 0221507
  • William Browder, Algebraic $K$-theory with coefficients $\~Z/p$, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 657, Springer, Berlin, 1978, pp. 40–84. MR 513541
  • W. G. Dwyer and E. M. Friedlander, Conjectural calculations of general linear group homology, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 135–147. MR 862634, DOI 10.1090/conm/055.1/862634
  • Zbigniew Fiedorowicz and Stewart Priddy, Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Mathematics, vol. 674, Springer, Berlin, 1978. MR 513424
  • Stephen A. Mitchell, On the plus construction for $B\textrm {GL}\,\textbf {Z}[\frac 12]$ at the prime $2$, Math. Z. 209 (1992), no. 2, 205–222. MR 1147814, DOI 10.1007/BF02570830
  • Mamoru Mimura and Hirosi Toda, Topology of Lie groups. I, II, Translations of Mathematical Monographs, vol. 91, American Mathematical Society, Providence, RI, 1991. Translated from the 1978 Japanese edition by the authors. MR 1122592, DOI 10.1090/mmono/091
  • Daniel Quillen, The $\textrm {mod}$ $2$ cohomology rings of extra-special $2$-groups and the spinor groups, Math. Ann. 194 (1971), 197–212. MR 290401, DOI 10.1007/BF01350050
  • Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
  • J. Rognes and C. Weibel: Two-primary algebraic K-theory of rings of integers in number fields, preprint (1997), http://math.uiuc.edu/K-theory/0220/.
  • V. Voevodsky: The Milnor conjecture, preprint (1996), http://math.uiuc.edu/K-theory/0170/.
  • Charles Weibel, The 2-torsion in the $K$-theory of the integers, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 6, 615–620 (English, with English and French summaries). MR 1447030, DOI 10.1016/S0764-4442(97)86977-7
Similar Articles
Additional Information
  • Dominique Arlettaz
  • Affiliation: Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland
  • Email: dominique.arlettaz@ima.unil.ch
  • Mamoru Mimura
  • Affiliation: Department of Mathematics, Faculty of Science, Okayama University, Okayama, Japan 700
  • Email: mimura@math.okayama-u.ac.jp
  • Koji Nakahata
  • Affiliation: Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland
  • Email: koji.nakahata@ima.unil.ch
  • Nobuaki Yagita
  • Affiliation: Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
  • MR Author ID: 185110
  • Email: yagita@mito.ipc.ibaraki.ac.jp
  • Received by editor(s): September 15, 1997
  • Published electronically: April 8, 1999
  • Additional Notes: We would like to thank Christian Ausoni for his helpful comments on Bökstedt’s work [M. Bökstedt: The rational homotopy type of $\Omega \mathrm {Wh}^{\mathrm {Diff}}(*)$, in: Algebraic Topology, Aarhus 1982, Lecture Notes in Math. 1051 (1984), 25–37] and the referee for his interesting suggestions. The third author thanks the Swiss National Science Foundation for financial support.
  • Communicated by: Ralph Cohen
  • © Copyright 1999 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 127 (1999), 2199-2212
  • MSC (1991): Primary 20G10; Secondary 19D55, 20J05, 55R40, 55S10
  • DOI: https://doi.org/10.1090/S0002-9939-99-05183-7
  • MathSciNet review: 1646320