Ossa’s theorem and Adams covers
HTML articles powered by AMS MathViewer
- by Robert R. Bruner
- Proc. Amer. Math. Soc. 127 (1999), 2443-2447
- DOI: https://doi.org/10.1090/S0002-9939-99-05232-6
- Published electronically: March 16, 1999
- PDF | Request permission
Abstract:
We show that Ossa’s theorem splitting $ku \wedge BV$ for elementary abelian groups $V$ follows from general facts about $ku \wedge BZ/2$ and Adams covers. For completeness, we also provide the analogous results for $ko \wedge BV$.References
- David Copeland Johnson and W. Stephen Wilson, On a theorem of Ossa, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3753–3755. MR 1415328, DOI 10.1090/S0002-9939-97-04062-8
- W. H. Lin, D. M. Davis, M. E. Mahowald, and J. F. Adams, Calculation of Lin’s Ext groups, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 459–469. MR 569195, DOI 10.1017/S0305004100056899
- H. R. Margolis, Eilenberg-Mac Lane spectra, Proc. Amer. Math. Soc. 43 (1974), 409–415. MR 341488, DOI 10.1090/S0002-9939-1974-0341488-9
- E. Ossa, Connective $K$-theory of elementary abelian groups, Transformation groups (Osaka, 1987) Lecture Notes in Math., vol. 1375, Springer, Berlin, 1989, pp. 269–275. MR 1006699, DOI 10.1007/BFb0085616
Bibliographic Information
- Robert R. Bruner
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- Email: rrb@math.wayne.edu
- Received by editor(s): October 22, 1997
- Published electronically: March 16, 1999
- Communicated by: Ralph Cohen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2443-2447
- MSC (1991): Primary 55P10, 55N20; Secondary 55N15, 55S10
- DOI: https://doi.org/10.1090/S0002-9939-99-05232-6
- MathSciNet review: 1653421