Opial’s modulus and fixed points of semigroups of mappings
HTML articles powered by AMS MathViewer
- by Tadeusz Kuczumow
- Proc. Amer. Math. Soc. 127 (1999), 2671-2678
- DOI: https://doi.org/10.1090/S0002-9939-99-04805-4
- Published electronically: March 16, 1999
- PDF | Request permission
Abstract:
If $X$ is a Banach space with the non-strict Opial property and $r_{X}\left ( 1\right ) >0$ and $C$ is a nonempty convex weakly compact subset of $X$, then every semigroup $\mathfrak {T}=\left \{ T_{t}:t\in G\right \}$ of asymptotically regular selfmappings of $C$ with $\sigma \left ( \mathfrak {T}\right ) <1+r_{X}\left ( 1\right )$ has a common fixed point.References
- J.-B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach. I, II, Séminaire d’Analyse Fonctionnelle (1978–1979), École Polytech., Palaiseau, 1979, pp. Exp. No. 7-8, 45 (French). MR 557363
- F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566–570. MR 190744, DOI 10.1090/S0002-9904-1966-11543-4
- M. BUDZYŃSKA, T. KUCZUMOW & S. REICH, A uniformly asymptotic normal structure, a semi-Opial property of Banach spaces and fixed points of uniformly lipschitzian semigroups. Part I, Abstr. Appl. Anal. (to appear).
- M. BUDZYŃSKA, T. KUCZUMOW & S. REICH, A uniformly asymptotic normal structure, a semi-Opial property of Banach spaces and fixed points of uniformly lipschitzian semigroups. Part II, Abstr. and Appl. Anal. (to appear).
- W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), no. 2, 427–436. MR 590555, DOI 10.2140/pjm.1980.86.427
- DOMÍNGUEZ BENAVIDES T., Fixed point theorems for uniformly Lipschitzian mappings and asymptotically regular mappings, Nonlinear Analysis 32 (1998), 15–27.
- DOMÍNGUEZ BENAVIDES T., Stability of the fixed point property for nonexpansive mappings, preprint.
- Tomás Domínguez Benavides and Hong Kun Xu, A new geometrical coefficient for Banach spaces and its applications in fixed point theory, Nonlinear Anal. 25 (1995), no. 3, 311–325. MR 1336528, DOI 10.1016/0362-546X(94)00145-8
- Michael Edelstein and Richard C. O’Brien, Nonexpansive mappings, asymptotic regularity and successive approximations, J. London Math. Soc. (2) 17 (1978), no. 3, 547–554. MR 500642, DOI 10.1112/jlms/s2-17.3.547
- K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135–140. MR 336468, DOI 10.4064/sm-47-2-134-140
- Kazimierz Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982) Contemp. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1983, pp. 115–123. MR 729507, DOI 10.1090/conm/021/729507
- Kazimierz Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005, DOI 10.1017/CBO9780511526152
- Jarosław Górnicki, Fixed points of asymptotically regular semigroups in Banach spaces, Rend. Circ. Mat. Palermo (2) 46 (1997), no. 1, 89–118. MR 1462876, DOI 10.1007/BF02844475
- Jarosław Górnicki and Manfred Krüppel, Fixed points of uniformly Lipschitzian mappings, Bull. Polish Acad. Sci. Math. 36 (1988), no. 1-2, 57–63 (English, with Russian summary). MR 998208
- Shiro Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), no. 1, 65–71. MR 412909, DOI 10.1090/S0002-9939-1976-0412909-X
- JIMÉNES-MELADO A. & LLORENS-FUSTER E., Stability of the fixed point property for nonexpansive mappings, Houston J. of Math. 18 (1992), 251-257.
- JIMÉNES-MELADO A. & LLORENS-FUSTER E., Opial modulus and stability of the fixed point property, preprint.
- Tae Hwa Kim and W. A. Kirk, Fixed point theorems for Lipschitzian mappings in Banach spaces, Nonlinear Anal. 26 (1996), no. 12, 1905–1911. MR 1386122, DOI 10.1016/0362-546X(95)00050-6
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- T.-C. Lim and Hong Kun Xu, Uniformly Lipschitzian mappings in metric spaces with uniform normal structure, Nonlinear Anal. 25 (1995), no. 11, 1231–1235. MR 1350742, DOI 10.1016/0362-546X(94)00243-B
- Pei-Kee Lin, A uniformly asymptotically regular mapping without fixed points, Canad. Math. Bull. 30 (1987), no. 4, 481–483. MR 919440, DOI 10.4153/CMB-1987-071-6
- LIN P.-K., Stability of the fixed point property of Hilbert spaces, preprint.
- Pei-Kee Lin, Kok-Keong Tan, and Hong Kun Xu, Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal. 24 (1995), no. 6, 929–946. MR 1320697, DOI 10.1016/0362-546X(94)00128-5
- Zdzisław Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 211301, DOI 10.1090/S0002-9904-1967-11761-0
- Stanisław Prus, Banach spaces with the uniform Opial property, Nonlinear Anal. 18 (1992), no. 8, 697–704. MR 1160113, DOI 10.1016/0362-546X(92)90165-B
- Daryl Tingley, Noncontractive uniformly Lipshitzian semigroups in Hilbert space, Proc. Amer. Math. Soc. 92 (1984), no. 3, 355–361. MR 759652, DOI 10.1090/S0002-9939-1984-0759652-X
- Daryl Tingley, An asymptotically nonexpansive commutative semigroup with no fixed points, Proc. Amer. Math. Soc. 97 (1986), no. 1, 107–113. MR 831397, DOI 10.1090/S0002-9939-1986-0831397-9
- Hong-Kun Xu, Geometrical coefficients of Banach spaces and nonlinear mappings, Recent advances on metric fixed point theory (Seville, 1995) Ciencias, vol. 48, Univ. Sevilla, Seville, 1996, pp. 161–178. MR 1440224
Bibliographic Information
- Tadeusz Kuczumow
- Affiliation: Instytut Matematyki, UMCS, 20-031 Lublin, Poland
- Email: tadek@golem.umcs.lublin.pl
- Received by editor(s): February 27, 1997
- Received by editor(s) in revised form: September 25, 1997, and November 14, 1997
- Published electronically: March 16, 1999
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2671-2678
- MSC (1991): Primary 47H10, 46B20
- DOI: https://doi.org/10.1090/S0002-9939-99-04805-4
- MathSciNet review: 1486740