On the nonrationality of rigid Lie algebras
HTML articles powered by AMS MathViewer
- by J. M. Ancochea Bermudez and M. Goze
- Proc. Amer. Math. Soc. 127 (1999), 2611-2618
- DOI: https://doi.org/10.1090/S0002-9939-99-04824-8
- Published electronically: April 23, 1999
- PDF | Request permission
Abstract:
In his thesis, Carles made the following conjecture: Every rigid Lie algebra is defined on the field $Q$. This was quite an interesting question because a positive answer would give a nice explanation of the fact that simple Lie algebras are defined over $Q$. The goal of this note is to provide a large number of examples of rigid but nonrational and nonreal Lie algebras.References
- José María Ancochéa-Bermúdez, On the rigidity of solvable Lie algebras, Deformation theory of algebras and structures and applications (Il Ciocco, 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 247, Kluwer Acad. Publ., Dordrecht, 1988, pp. 403–445. MR 981623
- José María Ancochéa-Bermúdez and Michel Goze, Le rang du systeme linéaire des racines d’une algèbre de Lie rigide résoluble complexe, Comm. Algebra 20 (1992), no. 3, 875–887 (French). MR 1153055, DOI 10.1080/00927879208824380
- Michel Goze and José María Ancochéa-Bermúdez, Algèbres de Lie rigides dont le nilradical est filiforme, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 1, 21–24 (French, with English summary). MR 1086494
- Carles, R., Variété d’algèbres de Lie, Thèse Poitiers 1984.
- Michel Goze and Yusupdjan Khakimdjanov, Nilpotent Lie algebras, Mathematics and its Applications, vol. 361, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1383588, DOI 10.1007/978-94-017-2432-6
- Michel Goze and You Hakimjanov, Sur les algèbres de Lie nilpotentes admettant un tore de dérivations, Manuscripta Math. 84 (1994), no. 2, 115–124 (French, with English summary). MR 1285951, DOI 10.1007/BF02567448
- Michel Goze, Perturbations of Lie algebra structures, Deformation theory of algebras and structures and applications (Il Ciocco, 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 247, Kluwer Acad. Publ., Dordrecht, 1988, pp. 265–355. MR 981620, DOI 10.1007/978-94-009-3057-5_{3}
- Terje Sund, Classification of filiform solvable Lie algebras, Comm. Algebra 22 (1994), no. 11, 4303–4359. MR 1284333, DOI 10.1080/00927879408825075
Bibliographic Information
- J. M. Ancochea Bermudez
- Affiliation: Universidad Complutense, Facultad de Matematicas, Departamento de geometria y topologia 27000 Madrid, Spain
- M. Goze
- Affiliation: Université de Haute Alsace, Faculté des Sciences et Techniques, 32, rue du Grillenbreit, F, 68000 Colmar, France
- Email: M.Goze@univ-mulhouse.fr
- Received by editor(s): April 19, 1996
- Received by editor(s) in revised form: December 1, 1997
- Published electronically: April 23, 1999
- Communicated by: Roe Goodman
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2611-2618
- MSC (1991): Primary 17Bxx
- DOI: https://doi.org/10.1090/S0002-9939-99-04824-8
- MathSciNet review: 1600089