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ABSTRACT. The notion of a cut-point space is introduced as a connected topo-
logical space without any non-cut point. It is shown that a cut-point space is
infinite. The non-cut point existence theorem is proved for general (not nec-
essarily T%) topological spaces to show that a cut-point space is non-compact.
Also, the class of irreducible cut-point spaces is studied and it is shown that
this class (up to homeomorphism) has exactly one member: the Khalimsky
line.

1. INTRODUCTION

The real line R is a source of intuition in topology. Many other familiar topo-
logical spaces can be obtained from R by topological constructions. It has the
following properties:

(@) it is connected but the removal of any one of its points leaves it disconnected;
(b) it is metrizable;

(¢) its topology can be generated by a linear ordering.

Conversely, it can be proved that every topological space with the above proper-
ties is homeomorphic to R. Conditions (b) and (c) are too strong. They impose
structures on the topological space, so this characterization of R seems somehow
extrinsic.

In this paper we study the topological spaces that satisfy condition (a), and call
them cut-point spaces. In section 2, a cut-point space is defined again formally and
some examples are given. In section 3, it is shown that every cut-point space has
an infinite number of closed points. Also, it is proved that every cut-point space is
non-compact. To prove the latter, we need the most general form of the non-cut
point existence theorem. The special case of this theorem for metric topological
spaces is proved in [4]. A proof of the theorem for Tj topological spaces can be
found in [1] (see also [5]). In Section 4, an irreducible cut-point space is defined
naturally as a cut-point space whose proper subsets are not cut-point spaces. It
is shown that an irreducible cut-point space is necessarily homeomorphic to the
Khalimsky line (see Example 2.5 for the definition of the Khalimsky line). This
result may also be viewed as a straightforward characterization of the Khalimsky
line. Objects in n-dimensional digital images have sometimes been regarded as
subspaces of the product of n copies of the Khalimsky line 2], [3].
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Remark. Let X be a topological space and let Y C X. Everywhere in this paper,
the topology of Y is the subspace topology. A point x € X is said to be closed
(resp. open) if {x} is a closed (resp. open) subset of X.

2. DEFINITIONS AND EXAMPLES

2.1. Definition. Let X be a nonempty connected topological space. A point x
in X is said to be a cut point of X if X\{z} is a disconnected subset of X. A
nonempty connected topological space X is said to be a cut-point space if every x
in X is a cut point of X.

In the following three examples, R? is the Euclidean plane with the standard
topology.

2.2. Example. The union of n straight lines in R? is a cut-point space if and only
if either all of them are concurrent or exactly n — 1 of them are parallel.

2.3. Example. Let X; = {(z,y) € R? : # < 0 and |y = 1} and let
X, ={(z,y) € R?: 2 > 0and y =sin1}. Define X = X; UX,. Then X is a
cut-point space. For each x € X, X\{z} has exactly two components.

A “connected ordered topological space” (COTS) is a connected topological
space X with the following property: if Y is a three-point subset of X, there is
a y in Y such that Y meets two connected components of X\{y} (see [2]). Put
Y ={(0,-1),(1,sin1),(0,1)} in Example 2.3 to see that X is not a COTS.

2.4. Example. Let Xo = {(2,0) e R? : 2 <0} U {(x,1) € R*: z > 0} and let for
each positive integer n, ¥, = {(2,y) € R?: 0 < y < 1}. Define X = XU ( U Y,).

n=1
Then X is a cut-point space.
A connected topological space is said to have the “connected intersection prop-
erty” if the intersection of every two connected subsets of it is connected. In Exam-

ple 2.4, let X1 = Xo U (| J Yan-1) and X5 = Xo U (| J Y2n). Since X1 N X» = X
n=1 n=1

is not connected, X does not possess the connected intersection property. Example

2.4 is a slightly modified version of an example in [6].

2.5. Example (The Khalimsky line). Let Z be the set of integers and let
B={{2i—1,2i,2i+1}:ic ZYyU{{2i+ 1} :i € Z}.

Then B is a base for a topology on Z. The set Z with this topology is a cut-
point space and is called the Khalimsky line. Each point in Z has a smallest open
neighborhood and the base B is the collection of all such neighborhoods. It can be
easily seen that the Khalimsky line is irreducible in the sense that no proper subset
of it is a cut-point space.

3. TOPOLOGICAL PROPERTIES OF CUT-POINT SPACES

Theorem 3.2 is the key theorem of this section. The main theorem of this section
is Theorem 3.9 which implies the non-compactness of cut-point spaces. Notation
3.1 is adopted from [5].

3.1. Notation. Let Y be a topological space. We write Y = A\l? to mean Aand B
are two nonempty subsets of Y such that Y = AUBand ANB=ANB = 2.
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3.2. Theorem. Let X be a connected topological space, and let x be a cut point of
X such that X\{z} = A|B. Then {z} is open or closed. If {x} is open, then A
and B are closed; if {x} is closed, then A and B are open.

Proof. Since A is both open and closed in X\{z}, there is an open subset V of X
such that A = V N (X\{z}) = V\{z}, and there is a closed subset F' of X such
that A = FN(X\{z}) = F\{z}. Thus A = V\{z} = F\{«}. Since the assumption
V = F contradicts the connectedness of X, we have {z} = V\F or {z} = F\V.
If {x} = V\F, then {z} is open and A = F' is closed. If {z} = F\V, then {z} is
closed and A =V is open. O

3.3. Corollary. Let X be a connected topological space, and let' Y be the subset of
all cut points of X. Then the following statements are obviously true.

(a) Fvery nonempty connected subset of Y that is not a singleton, contains at
least one closed point.
(b) If x €Y is open, then every limit point of {x} in'Y is a closed point.

3.4. Lemma. Let X be a connected topological space, and let x be a cut point of
it. If X\{z} = A|B, then AU {z} is connected.

Proof. f AU {a} is not connected, then there are subsets C' and D of X such
that AU {z} = C|D. Without loss of generality, we may assume that z € C.
Then D C A. Since (BUC)ND = (BND)U(CND)=BNDCBNA=g,
(BUC)ND =@. Since (BUC)ND = (BND)U(CND)=(BND)C BNA=g,
(BUC)N D = @. Therefore X = (B UC)|D. This contradicts the connectedness
of X. a

3.5. Lemma. Let X be a connected topological space and let x be a cut point of
it. If X\{z} = A|B and if every point of A is a cut point of X, then A contains at
least one closed point.

Proof. Suppose that A consists exclusively of open points. Since, by Lemma 3.4,
AU {x} is connected, {z} is closed and hence (by Theorem 3.2) AU {z} is closed
too. Thus, for every y € A, {y} € AU {z}, and therefore, by Corollary 3.3 (b), =
is the only possible limit point of {y}. As {y} has a limit point (since {y} is open
and X is connected), x is a limit point of {y}. This implies that {z,y} is connected
for any y € A. Let yg € A. Since B U {x} is connected by Lemma 3.4,

XN\yoy= U {=ytuBU{z})
YyEA,Y#Yo

is connected too. This contradicts the fact that yg is a cut point of X. O

3.6. Lemma. Let X be a connected topological space, and let x and y be two cut
points of it such that X\{z} = A|B and X\{y} =C|D. If x € C and y € A, then
DCAand BCC.

Proof. Since D U {y} is connected by Lemma 3.4, and since D U {y} C X\{z}, we
have DU {y} € A or DU {y} C B. Since y € A, the second inclusion is not true.
Hence D C A. A similar argument shows that B C C. O

In the next theorem, we show that a finite topological space cannot be a cut-point
space.
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3.7. Theorem. Let X be a cut-point space. Then the set of closed points of X is
infinite.

Proof. By mathematical induction, we construct a sequence x1,xs,--- of distinct
closed points in X. Define Cy = X. By Corollary 3.3 (a), there exists a closed
point 7 in Cy. Since x1 is a cut point of X, there are open subsets C; and D,
of X such that X\{z1} = C1|D;. Now, suppose that the distinct closed points
T1,%2, - , %y in X and the open subsets Cy,---,C,,D1,---, D, of X are chosen
such that X\{Zlil} = 01|D1, z; € Ci_1 and C;_1 D C; for each i,l <17 < n
According to Lemma 3.5, there is a closed point z,41 € C,. There are open
subsets Cy,4+1 and D,, 41 of X such that X\{z,+1} = Cr41|Dn+1. By interchanging
Chr+1 and D, 41, if necessary, we may asuume that x,, € D,4+1. Thus, by Lemma
3.6, Cp, O Cpy1. Since x; & C;, x; € C, for any i,1 < i < n. The fact that
Tp41 € Cp implies that x4 is different from x1,--- , x,. O

3.8. Corollary. Let X be a cut-point space. Then |X| = oo.

Of course, Theorem 3.7 is a generalization of Corollary 3.8. Using the Hausdorff
Maximal Principle, we prove another generalization of Corollary 3.8 in the following
theorem.

3.9. Theorem. Let X be a compact connected topological space with more than
one point. Then X has at least two non-cut points.

Proof. Suppose that X has at most one non-cut point. Let zy be a cut point of
X and let X\{zo9} = Ag|By. Since X has at most one non-cut point, either Ay or
By (without loss of generality assume Ag) exclusively consists of cut points. By
Lemma 3.5, Ag contains some closed cut point of X, say x. Let X\{z} = A|B
and without loss of generality assume that zg € B. Then by Lemma 3.6, A C Ay.
Define S = {U : U is an open subset of X, U O B, U\U is a singleton, and U # X}.
Since B is open and B = BU {z}, B € S. For each U, € S and Ug € S, write
Uo <Ug if U, = Ug, or if U, C Ug. (S, <) is clearly a partially ordered set, and by
the Hausdorff Maximal Principle there is a maximal chain C in S. Let U, € S, and
let {zo} = Us\Us. Since X\{z,} = Us|(X\U,), by Lemma 3.5 there is a closed
point y € X\U, C A. Let X\{y} = C|D. Since U, is connected by Lemma 3.4,
U,CCorU,CD,ie Uy,<CorU,<D. Since U, was arbitrary in S,S (and
consequently C) does not have a maximal element. Thus U U = U U. Write
Uec vec
V= U U. Since U is connected for each U € S, V is connected too. We claim

vec
that V' = X. Suppose otherwise. Then X\V is a nonempty closed subset of X.

Since X\V C A, every point in X\V is a cut point of X and is either open or
closed by Theorem 3.2. As X\V is not open (it is closed and X is connected), the
points of X\V cannot all be open, and so there is a closed cut point 2’ in X\V.
Let X\{2'} = G|H. Since V is connected, V. C G or V. C H. Assume (without
loss of generality) that V' C G. Since G € §,U < G for any U € C. Since C does
not have a maximal element, G ¢ C. This contradicts the maximality of the chain
C. Hence V = X, and therefore C is an infinite open covering of X. Since C is a
chain without a maximal element, there is no finite subcovering of C for X. This
contradicts the compactness of X. O

3.10. Corollary. Let X be a cut-point space. Then X is non-compact.
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4. TRREDUCIBLE CUT-POINT SPACES AND CHARACTERIZATION
OF THE KHALIMSKY LINE

In this section, we define an irreducible cut-point space and we show that it is
necessarily homeomorphic to the Khalimsky line (see Example 2.5).

4.1. Definition. A cut-point space is said to be an irreducible cut-point space if
no proper subset of it (with the subspace topology) is a cut-point space.

4.2. Lemma. Let X be a cut-point space, let x € X, and let X\{z} = A|B. If A
is not connected, then AU {x} is a cut-point space.

Proof. Put Y = AU {z}. Clearly z is a cut point of Y. Let y be an arbitrary
point in A. Since X\{y} = (Y\{y}) U (B U {z}) is not connected, and since
z € (Y\{y})N(BU{z}), either Y\{y} or BU{z} is disconnected. By Lemma 3.4,
B U {x} is connected. Thus Y\{y} is disconnected. O

4.3. Corollary. If X is an irreducible cut-point space, then, for every x € X,
X\{z} has ezxactly two components.

Proof. Let X\{z} = A|B. Since X is irreducible, AU {z} and B U {z} are not
cut-point spaces. Thus, by Lemma 4.2, A and B are connected. O

4.4. Lemma. Let X be an irreducible cut-point space, let © € X and let X\{z} =
A|B. Then there are exactly two points y € A and z € B such that {z,y} and
{z,z} are connected. Furthermore if x is closed then y and z are open, and if x is
open then y and z are closed.

Proof. Since, by Corollary 4.3, A is connected and since X is an irreducible cut-
point space, A has a non-cut point y; i.e. A\{y} is connected. We claim that y is
the unique point in A such that {z,y} is connected. First we prove that if {z,y’}
is connected for some y’ € A, then y’ = y. Let ¢’ be a point in A such that {z,y'}
is connected. Suppose that y’ # y. Since, by Lemma 3.4, B U {z} is connected,
and since X\{y} = (A\{y}) U (B U {z}), the connectedness of {z,y'} implies the
connectedness of X\{y} (a contradiction). To prove that {z,y} is connected we
consider two cases.

(1) « is closed. In this case, A is (open and) not closed but A U {z} is closed
(both by Theorem 3.2). Thus z is a limit point of A. On the other hand, since
X\{y} = (A\{y}) U (B U {x}) is not connected, z is not a limit point of A\{y}.
Hence z is a limit point of {y}.

(2) x is open. In this case, A is (closed and) not open but AU {x} is open (both
by Theorem 3.2). Thus there is a point 3’ in A which is not an interior point of A.
Since ¥’ is an interior point of AU {z}, ¥/ is a limit point of {z}. Hence {z,y'} is
connected. Since, as we proved above, y' =y, {z,y} is connected.

A similar argument shows that there is a unique point z in B such that {z, z} is
connected. The last statement of the lemma is implied by Theorem 3.2 and the
connectedness of {z,y} and {z, z}. |

4.5. Theorem. A topological space X is an irreducible cut-point space if and only
if X is homeomorphic to the “Khalimsky line”.

Proof. 1t can be easily seen that the Khalimsky line is an irreducible cut-point
space. Let X be an irreducible cut-point space. By mathematical induction, we
find a subset Y of X that is homeomorphic to the Khalimsky line, and then, by



2802 B. HONARI AND Y. BAHRAMPOUR

irreducibility of X, we conclude that X =Y. Let z¢ be a closed point in X, and
let X\{zo} = Ao|Bo. By Lemma 4.4 there are points 2_; in Ag and z7 in By such
that {z_1,20} and {z¢, 21} are connected. Define Y1 = {z_1,x¢,z1}. Let A; be
the component of X\{z1} that contains z¢ and let By be the other component of
X\{z1}. Let B_; be the component of X\{z_;} that contains xo and let A_; be
the other component of X\{z_1}. Assume that for an arbitrary positive integer
n, the subset Y,, = {z; : i € Z and —n < i < n} of X (with 2n + 1 points) is
chosen such that for each ¢ and j which satisfy —n < 4,j < n and |i — j| = 1,
{z;,z;} is connected. Moreover, assume that for each nonzero i, —n < i < n, the
components A; and B; of X\{xz;} are chosen such that zo € A; if 7 is positive, and
xo € B; if i is negative. Since Y, \{z_,} = U {z;,z;} is connected,
—n<i<j<n,j=i+1
it is a subset of A_,, or B_,, and since zo € A_,,, Y,\{z—-»} C B_,,. By Lemma
4.4 there is a unique point z_,_1 in A_, such that {z_,_1,2_,} is connected.
Since (Y, U{z_pn_1})\{zn} = U {x;,x;} is connected, it is a subset
—n—1<i<j<n,j=i+1

of A, or By, and since zg € B,, YoU{z_n_1})\{zn} C A,. By Lemma 4.4
there is a unique point 2,11 in B, such that {x,,2z,+1} is connected. Thus we
obtain a subset Y41 ={z;:i € Zand —(n+1) <i<n+1} of X (with 2n+ 3
points) such that for each ¢ and j which satisfy —(n + 1) < i,57 < n+ 1 and
li — j| = 1,{x;,x;} is connected. To complete the induction step, we define the
subsets A_,,_1, B_y—1, Apnt1, Bny1 of X such that X\{z_,_1} = A_,_1|B_p_1,
X\{l‘n+1} = An+1|Bn+1, rog € B_,,_1 and x¢ € An+1. Put

V= Yu={wi:icZ}
n=1

It can be easily seen that for each integer i, Y NA; = {z; : j <i} and Y N B; =
{z; : j > i}. Since o is closed, (by iterated application of Lemma 4.4) xz, is
closed if n is even, and x,, is open if n is odd. Clearly, for each ¢ € Z, the smallest
open neighborhood of 29,41 in Y is {@9;11}. Since for each i € Z, xy; is a limit
point of {x9;—1} and {x2;41}, every open neighborhood of x9; in X (and hence in
Y) contains x2;—1 and x2;41. On the other hand, since z9;_o and x9;19 are closed,
Bsy;_o and AQH_Q are open in X. Thus {1‘21'_1, xo9;, $2i+1} = (YﬂBzi_g)ﬁ(YﬂAgH_g)
is the smallest open neighborhood of x5; in Y. Hence

B' = {{xai—1, 22,241} : 1 € Z} U{{z2i41} : i € Z}

is a base for the topology of Y. Comparing this base with the base of the Khalimsky
line in Example 2.5, we see that Y is homeomorphic to the Khalimsky line. O
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