ON THE DIMENSION OF ALMOST n-DIMENSIONAL SPACES

M. LEVIN AND E. D. TYMCHATYN

Abstract. Oversteegen and Tymchatyn proved that homeomorphism groups of positive dimensional Menger compacta are 1-dimensional by proving that almost 0-dimensional spaces are at most 1-dimensional. These homeomorphism groups are almost 0-dimensional and at least 1-dimensional by classical results of Brechner and Bestvina. In this note we prove that almost n-dimensional spaces for $n \geq 1$ are n-dimensional. As a corollary we answer in the affirmative an old question of R. Duda by proving that every hereditarily locally connected, non-degenerate, separable, metric space is 1-dimensional.

1. Introduction

We consider only separable metric spaces. A space X is said to be almost n-dimensional if it has a basis $\{U_i\}$ such that if $\text{cl} U_i \cap \text{cl} U_j = \emptyset$, then $X = G \cup H$ where G and H are closed sets, $U_i \subset G \setminus H$, $U_j \subset H \setminus G$ and $\dim G \cap H \leq n - 1$ and n is the smallest natural number such that such a basis exists for n. It is clear that n-dimensional spaces are at most almost n-dimensional. We shall prove that for $n \geq 1$ the converse is also true. We shall also prove that if $X = X_1 \cup X_2$ where X_1 is almost 0-dimensional and X_2 is 0-dimensional, then $\dim X \leq 1$.

A property equivalent to almost 0-dimensionality was first considered in [7]. The Erdős space of irrational sequences in Hilbert space is known to be a universal almost 0-dimensional space [5]. Erdős space is 1-dimensional.

In [7] Erdős space was used to construct a hereditarily locally connected space (i.e., a connected space all of whose connected subsets are locally connected) which is not rim-countable. In [8] it was proved that hereditarily locally connected spaces are at most 2-dimensional. This was a partial solution to a question of R. Duda. In this paper we answer Duda’s question in the affirmative by proving that hereditarily locally connected spaces are at most 1-dimensional.

A subset X of a compactum K is L-embedded in K if for every open cover U of K there is a neighbourhood U of X in K such that the continua in U refine U. An almost 0-dimensional space is L-embeddable in a compactum [6] and

Theorem 1.1 (Levin-Pol, [6]). If a space X is L-embeddable in a compactum K, then $\dim X \leq 1$.

Received by the editors February 13, 1997 and, in revised form, November 20, 1997.

1991 Mathematics Subject Classification. Primary 54F45, 54F25, 54F50.

Key words and phrases. Almost 0-dimensional spaces, L-embeddings, hereditarily locally connected spaces.

The authors were supported in part by NSERC grant OGP0005616.

©1999 American Mathematical Society
2. Almost n-dimensional spaces

Almost 0-dimensional spaces are at most 1-dimensional and the 1-dimensionality cannot be improved. Our first result shows that this interesting behavior does not occur in higher dimensions.

Theorem 2.1. If X is almost n-dimensional, $n \geq 1$, then X is n-dimensional.

Proof. Let $\mathcal{U} = \{U_i\}$ be a basis of open sets for X which witnesses the almost n-dimensionality of X, i.e. if $\text{cl} U_i \cap \text{cl} U_j = \emptyset$ and $i < j$, then $X = G_{ij} \cup H_{ij}$ where G_{ij} and H_{ij} are closed sets, $U_i \subset G_{ij} \setminus H_{ij}$, $U_j \subset H_{ij} \setminus G_{ij}$ and $\dim G_{ij} \cap H_{ij} \leq n-1$. Let X' be a metric compactification of X. Index $\{(U_i, U_j) : i < j \text{ and } \text{cl} U_i \cap \text{cl} U_j = \emptyset\}$ by $\{A_k\}_{k=1}^\infty$. If $A_k = (U_i, U_j)$, let $B_k = \text{cl}_X G_{ij}$ and $C_k = \text{cl}_X H_{ij}$. Form an inverse sequence as follows:

$X_0 = X'$,
$X_1 = B_1 \times \{0\} \cup C_1 \times \{1\} \subset X_0 \times 2$ and let $\pi_0^1 : X_1 \to X_0$ be the natural projection.

If spaces X_j, $j = 0, \ldots, n$, and maps $\pi_j^i : X_i \to X_j$ are defined for $j \leq i \leq n$, let $X_{n+1} = ((\pi_0^0)^{-1}(B_n) \times \{0\}) \cup ((\pi_0^0)^{-1}(C_n) \times \{1\}) \subset X_n \times 2 \subset X_0 \times 2^{n+1}$. Let $\pi_{n+1}^n : X_{n+1} \to X_n$ be the natural projection and for $0 \leq j < n$ let $\pi_j^{j+1} : X_{n+1} \to X_j$ be the map $\pi_n^0 \circ \pi_{n+1}^n$.

Let $\tilde{X}' = \lim_{n \to \infty}(X_n, \pi_j^i) \subset X' \times 2^\omega$. \tilde{X}' is a compactum. Let $\pi_i : \tilde{X}' \to X_i$ be the projection. Then $\pi_0 : \tilde{X}' \to X_0 = X'$ is 0-dimensional and onto. Let $\psi : \tilde{X}' \to 2^\omega$ be the natural projection.

Let $\hat{X} = \pi_0^{-1}(X) \subset \tilde{X}' \subset X' \times 2^\omega$. We show \hat{X} is L-embedded in \tilde{X}'.

For each positive integer n let $G_n = \bigcup \{U_j : X' \setminus \text{cl}_X(X \setminus U_j) : U_j \in \mathcal{U} \text{ and } \text{diam} U_j \leq 1/n\}$ where $\text{diam} U_j$ is determined with respect to a metric in X'. Then G_n is open in X' and $X \subset G_n$. Let C be a continuum in $\pi_0^{-1}(G_n)$. Then $\psi(C)$ is a singleton and, hence, $\text{diam} C = \text{diam} \pi_0(C)$ for the product metric in $X' \times 2^\omega$. If $\text{diam} \pi_0(C) > 3/n$, then there exist $U_i, U_j \in \mathcal{U}$ with $\text{diam} U_i, \text{diam} U_j < 1/n$, $i < j$, $\pi_0(C) \cap U_i \neq \emptyset$, $\pi_0(C) \cap U_j \neq \emptyset$ and $\text{cl} U_i \cap \text{cl} U_j = \emptyset$. Set $A_k = (U_i, U_j)$. Then $\pi_k(C)$ meets $X_{k-1} \times \{0\}$ and $X_{k-1} \times \{1\}$ since

$\pi_k(\pi_0^{-1}(U_j)) \subset \pi_k(\pi_0^{-1}(B_k \setminus C_k)) \subset X_{k-1} \times \{0\}$ and

$\pi_k(\pi_0^{-1}(U_j)) \subset \pi_k(\pi_0^{-1}(C_k \setminus B_k)) \subset X_{k-1} \times \{1\}$.

This is a contradiction $\pi_k(C)$ is connected. Hence each continuum in $\pi_0^{-1}(G_n)$ has $\text{diam} \leq 3/n$ and by Theorem 1.1 \hat{X} is at most 1-dimensional.

Let $K = \bigcup_k (B_k \cap C_k \cap X)$. Clearly $\dim K \leq n - 1$. It is easy to see that for every $x \in X \setminus K$, $\pi_0^{-1}(x)$ is a singleton. Note that $\pi_0|_X : X \to X$ is closed, 0-dimensional and onto. Hence by Vainstein’s second theorem ([3], p. 245, Theorem 4.3.10) $\dim X \leq n$. Clearly $\dim X \geq n$ and we have $\dim X = n$.

Corollary 2.2. If X is a hereditarily locally connected, non-degenerate space, then $\dim X = 1$.

Proof. By [1], Theorem 7.4.1, each pair of disjoint, closed, connected subsets of X can be separated by a closed countable subset of X. Hence each basis for X of open connected sets witnesses the almost 1-dimensionality of X. By Theorem 2.1 X is 1-dimensional.

Theorem 2.3. Let $X = X_1 \cup X_2$ where X_1 is almost 0-dimensional and X_2 is 0-dimensional. Then $\dim X \leq 1$.

Proof. We may assume that X_1 is dense in X. Let $U = \{U_i\}$ be a collection of open sets in X such that $\{U_i \cap X_1\}$ is a basis of X_1 which witnesses the almost 0-dimensionality of X_1. Since X_2 is 0-dimensional each pair (U_i, U_j) of U with $clU_i \cap clU_j = \emptyset$ can be separated by a 0-dimensional closed subset. We use the same notation and construction as in the proof of Theorem 2.1. The difference between our case and the proof of Theorem 2.1 is that U is not a basis of X. Therefore we need a more subtle approach to show that \hat{X} is L-embedded in X'.

G_n covers X_2. Take a cover V_n of X_2 by open disjoint subsets of X' with $diam < 1/n$ and let $V_n = \bigcup\{V : V \in V_n\}$. Let C be a continuum in $\pi_0^{-1}(G_n \cup V_n)$.

If $\pi_0(C) \cap G_n = \emptyset$, then $\pi_0(C)$ is a subset of V_n and clearly $diam \pi_0(C) < 1/n$.

If $\pi_0(C) \cap G_n \neq \emptyset$, then by the reasoning of the proof of Theorem 2.1 we get that $diam \pi_0(C) \cap G_n \leq 3/n$. As V_n is the union of disjoint open sets $\pi_0(C) \subset O = (\bigcup\{V : V \in V_n, V \cap \pi_0(C) \cap G_n \neq \emptyset\}) \cup (\pi_0(C) \cap G_n)$. Clearly $diam O < 3/n + 2/n$.

Thus, \hat{X} is L-embedded in X'. \hfill \Box

Remark. Note that the union of two almost 0-dimensional spaces fails to be of $dim \leq 1$. Indeed, let Y be 1-dimensional and almost 0-dimensional, let M be a 1-dimensional compactum and let $M = M_1 \cup M_2$, $dim M_1 = dim M_2 = 0$. Then $X_1 = Y \times M_1$ and $X_2 = Y \times M_2$ are almost 0-dimensional, and by a theorem of Hurewicz [4] (see also [3], p. 78, 1.9.E(b)) $X = X_1 \cup X_2 = Y \times M$ is 2-dimensional.

References

Department of Mathematics, Tulane University, New Orleans, Louisiana 70118-5698
E-mail address: mlevin@mozart.math.tulane.edu
Current address: Institute of Mathematics, Tsukuba University, Tsukuba, Ibaraki 305, Japan
E-mail address: mlevin@math.tsukuba.ac.jp

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada S7N 0W0
E-mail address: tymchatyn@math.usask.ca