Hardy’s inequality for $W^{1,p}_0$-functions on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Vladimir M. Miklyukov and Matti K. Vuorinen
- Proc. Amer. Math. Soc. 127 (1999), 2745-2754
- DOI: https://doi.org/10.1090/S0002-9939-99-04849-2
- Published electronically: April 23, 1999
- PDF | Request permission
Abstract:
We prove that for every Riemannian manifold $\mathcal {X}$ with the isoperimetric profile of particular type there holds an inequality of Hardy type for functions of the class $W_0^{1,p}( \mathcal {X})$. We also study manifolds satisfying Hardy’s inequality and, in particular, we establish an estimate for the rate of growth of the weighted volume of the noncompact part of such a manifold.References
- L. Ahlfors, Zur theorie der Überlagerungsflächen, Acta Math., 65 (1935), 157-194.
- Alano Ancona, On strong barriers and an inequality of Hardy for domains in $\textbf {R}^n$, J. London Math. Soc. (2) 34 (1986), no. 2, 274–290. MR 856511, DOI 10.1112/jlms/s2-34.2.274
- D. H. Armitage and Ü. Kuran, The convexity of a domain and the superharmonicity of the signed distance function, Proc. Amer. Math. Soc. 93 (1985), no. 4, 598–600. MR 776186, DOI 10.1090/S0002-9939-1985-0776186-8
- Itai Benjamini and Jianguo Cao, A new isoperimetric comparison theorem for surfaces of variable curvature, Duke Math. J. 85 (1996), no. 2, 359–396. MR 1417620, DOI 10.1215/S0012-7094-96-08515-4
- Serguei G. Bobkov and Christian Houdré, Some connections between isoperimetric and Sobolev-type inequalities, Mem. Amer. Math. Soc. 129 (1997), no. 616, viii+111. MR 1396954, DOI 10.1090/memo/0616
- Ju. D. Burago and V. A. Zalgaller, Geometricheskie neravenstva, “Nauka” Leningrad. Otdel., Leningrad, 1980 (Russian). MR 602952
- Christopher B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 419–435. MR 608287, DOI 10.24033/asens.1390
- B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Sovremennaya geometriya, “Nauka”, Moscow, 1979 (Russian). Metody i prilozheniya. [Methods and applications]. MR 566582
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- E. Hebey, Sobolev Spaces on Riemannian Manifolds, Lectures Notes in Math., 1635, Springer-Verlag, Berlin-Heidelberg-New York, 1996.
- David Hoffman and Joel Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715–727. MR 365424, DOI 10.1002/cpa.3160270601
- J. Kinnunen and O. Martio, Maximal inequalities for Sobolev functions, Math. Research Letters 4 (1997), 489-500.
- André Lambert, Quelques théorèmes de décomposition des ultradistributions, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 3, x, 57–100 (French, with English summary). MR 552960
- John L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), no. 1, 177–196. MR 946438, DOI 10.1090/S0002-9947-1988-0946438-4
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- Pasi Mikkonen, On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996), 71. MR 1386213
- Andreas Wannebo, Hardy inequalities, Proc. Amer. Math. Soc. 109 (1990), no. 1, 85–95. MR 1010807, DOI 10.1090/S0002-9939-1990-1010807-1
- Shing Tung Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 487–507. MR 397619, DOI 10.24033/asens.1299
Bibliographic Information
- Vladimir M. Miklyukov
- Affiliation: Department of Mathematics, Volgograd State University, 2 Prodolnaya 30, Volgograd 400062, Russia
- Address at time of publication: Department of Mathematics, Brigham Young University, Provo, Utah 84602
- Email: miklukov@math.vgu.tsaritsyn.su, miklyuk@math.byu.edu
- Matti K. Vuorinen
- Affiliation: Department of Mathematics, P.O.Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland
- MR Author ID: 179630
- Email: vuorinen@csc.fi
- Received by editor(s): May 20, 1997
- Received by editor(s) in revised form: November 24, 1997
- Published electronically: April 23, 1999
- Communicated by: Christopher D. Sogge
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2745-2754
- MSC (1991): Primary 53C21
- DOI: https://doi.org/10.1090/S0002-9939-99-04849-2
- MathSciNet review: 1600117