The groups of quasiconformal homeomorphisms on Riemann surfaces
HTML articles powered by AMS MathViewer
- by Tatsuhiko Yagasaki
- Proc. Amer. Math. Soc. 127 (1999), 2727-2734
- DOI: https://doi.org/10.1090/S0002-9939-99-04861-3
- Published electronically: April 15, 1999
- PDF | Request permission
Abstract:
Suppose $M$ is a connected Riemann surface. Let ${\mathcal H}(M)$ denote the homeomorphism group of $M$ with the compact-open topology, and ${\mathcal H}^{\mathrm {QC}}(M)$ denote the subgroup of quasiconformal mappings of $M$ onto itself, and let ${\mathcal H}(M)_0$ and ${\mathcal H}^{\mathrm {QC}}(M)_0$ denote the identity components of ${\mathcal H}(M)$ and ${\mathcal H}^{\mathrm {QC}}(M)$ respectively. In this paper we show that the pair $({\mathcal H}(M)_0, {\mathcal H}^{\mathrm {QC}}(M)_0)$ is an $(s, \Sigma )$-manifold, and determine their topological types.References
- T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399–426. MR 283828, DOI 10.1090/S0002-9947-1971-0283828-7
- Ross Geoghegan and William E. Haver, On the space of piecewise linear homeomorphisms of a manifold, Proc. Amer. Math. Soc. 55 (1976), no. 1, 145–151. MR 402785, DOI 10.1090/S0002-9939-1976-0402785-3
- Mary-Elizabeth Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$-manifold, Illinois J. Math. 10 (1966), 563–573. MR 202140
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- R. Luke and W. K. Mason, The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972), 275–285. MR 301693, DOI 10.1090/S0002-9947-1972-0301693-7
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Katsuro Sakai and Raymond Y. Wong, On the space of Lipschitz homeomorphisms of a compact polyhedron, Pacific J. Math. 139 (1989), no. 1, 195–207. MR 1010791, DOI 10.2140/pjm.1989.139.195
- G. P. Scott, The space of homeomorphisms of a $2$-manifold, Topology 9 (1970), 97–109. MR 264676, DOI 10.1016/0040-9383(70)90053-4
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Yagasaki, T., Infinite-dimensional manifold tuples of homeomorphism groups, Topology Appl, 76 (1997) 261 - 281.
- —, The homeomorphism groups of noncompact 2-manifolds and the spaces of embeddings into 2-manifolds, preprint.
Bibliographic Information
- Tatsuhiko Yagasaki
- Affiliation: Department of Mathematics, Kyoto Institute of Technology, Matsugasaki, Sakyoku, Kyoto 606, Japan
- Email: yagasaki@ipc.kit.ac.jp
- Received by editor(s): March 20, 1997
- Received by editor(s) in revised form: November 28, 1997
- Published electronically: April 15, 1999
- Communicated by: Alan Dow
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2727-2734
- MSC (1991): Primary 30C62, 57N05, 57N20
- DOI: https://doi.org/10.1090/S0002-9939-99-04861-3
- MathSciNet review: 1600094