A class of 3-dimensional manifolds with bounded first eigenvalue on 1-forms
HTML articles powered by AMS MathViewer
- by Giovanni Gentile
- Proc. Amer. Math. Soc. 127 (1999), 2755-2758
- DOI: https://doi.org/10.1090/S0002-9939-99-04916-3
- Published electronically: April 23, 1999
- PDF | Request permission
Abstract:
Let $(P,g)$ be the framebundle over an oriented, $C^\infty$ Riemannian surface $S$. Denote by $\lambda -{1,1}(P,g)$ the first nonzero eigenvalue of the Laplace operator acting on differential forms of degree 1. We prove that $\lambda _{1,1}(P,g)\le c$ for all $(P,g)$ with canonical metrics $g$ of volume 1.References
- M. Berger, Sur les premières valeurs propres des variétés riemanniennes, Compositio Math. 26 (1973), 129–149 (French). MR 316913
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- David D. Bleecker, The spectrum of a Riemannian manifold with a unit Killing vector field, Trans. Amer. Math. Soc. 275 (1983), no. 1, 409–416. MR 678360, DOI 10.1090/S0002-9947-1983-0678360-0
- Jean-Pierre Bourguignon, Peter Li, and Shing-Tung Yau, Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv. 69 (1994), no. 2, 199–207. MR 1282367, DOI 10.1007/BF02564482
- B. Colbois and J. Dodziuk, Riemannian metrics with large $\lambda _1$, Proc. Amer. Math. Soc. 122 (1994), no. 3, 905–906. MR 1213857, DOI 10.1090/S0002-9939-1994-1213857-9
- G. Gentile and V. Pagliara, Riemannian metrics with large first eigenvalue on forms of degree $p$, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3855–3858. MR 1277111, DOI 10.1090/S0002-9939-1995-1277111-2
- J. Hersch, Quatre propriétés isopérimetriques des membranes sphériques homogénes, C. R. Acad. Sci. Paris Sér. A 270 (1970), 139–144.
- Peter Li and Shing Tung Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), no. 2, 269–291. MR 674407, DOI 10.1007/BF01399507
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- L. Polterovich, Symplectic aspects of the first eigenvalue, to appear.
- S. Tanno, Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spec. Riem. manifolds, Kaigai Publ. Kyoto (1983), 115–128.
- Hajime Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), no. 1, 209–226. MR 519046, DOI 10.2969/jmsj/03110209
- Y. Xu, Diverging Eigenvalues and Collapsing Riemannian Metrics, Institute for Advanced Study, October 1992.
- Paul C. Yang and Shing Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 1, 55–63. MR 577325
Bibliographic Information
- Giovanni Gentile
- Affiliation: Department of Mathematics, ETH-Zentrum, HG G34, CH 8092 Zurich, Switzerland
- Received by editor(s): December 1, 1997
- Published electronically: April 23, 1999
- Communicated by: Peter Li
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2755-2758
- MSC (1991): Primary 53C20; Secondary 58G25
- DOI: https://doi.org/10.1090/S0002-9939-99-04916-3
- MathSciNet review: 1610893