On groups with commutators of bounded order
HTML articles powered by AMS MathViewer
- by Pavel Shumyatsky
- Proc. Amer. Math. Soc. 127 (1999), 2583-2586
- DOI: https://doi.org/10.1090/S0002-9939-99-04982-5
- Published electronically: April 9, 1999
- PDF | Request permission
Abstract:
Let $p$ be a prime, $k$ a non-negative integer. We prove that if $G$ is a residually finite group such that $[x,y]^{p^k}=1$ for all $x,y\in G$, then $G’$ is locally finite.References
- S. I. Adian, The Burnside Problem and Identities in Groups, Nauka, Moscow, 1975.
- Yu. A. Bakhturin, Tozhdestva v algebrakh Li, “Nauka”, Moscow, 1985 (Russian). MR 785004
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Brian Hartley, Subgroups of finite index in profinite groups, Math. Z. 168 (1979), no. 1, 71–76. MR 542184, DOI 10.1007/BF01214436
- Bertram Huppert and Norman Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242, Springer-Verlag, Berlin-New York, 1982. AMD, 44. MR 650245
- Sergei V. Ivanov, The free Burnside groups of sufficiently large exponents, Internat. J. Algebra Comput. 4 (1994), no. 1-2, ii+308. MR 1283947, DOI 10.1142/S0218196794000026
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- John S. Wilson and Efim I. Zelmanov, Identities for Lie algebras of pro-$p$ groups, J. Pure Appl. Algebra 81 (1992), no. 1, 103–109. MR 1173827, DOI 10.1016/0022-4049(92)90138-6
- E. I. Zel′manov, Solution of the restricted Burnside problem for groups of odd exponent, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 1, 42–59, 221 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 1, 41–60. MR 1044047
- E. I. Zel′manov, Solution of the restricted Burnside problem for $2$-groups, Mat. Sb. 182 (1991), no. 4, 568–592 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 2, 543–565. MR 1119009
- Efim Zelmanov, Nil rings and periodic groups, KMS Lecture Notes in Mathematics, Korean Mathematical Society, Seoul, 1992. With a preface by Jongsik Kim. MR 1199575
Bibliographic Information
- Pavel Shumyatsky
- Affiliation: Department of Mathematics University of Brasilia 70910-900 Brasilia - DF, Brazil
- MR Author ID: 250501
- Email: pavel@ipe.mat.unb.br
- Received by editor(s): November 15, 1997
- Published electronically: April 9, 1999
- Additional Notes: This work was supported by FAPDF and CNPq-Brazil
- Communicated by: Ronald M. Solomon
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2583-2586
- MSC (1991): Primary 20E26, 20F40; Secondary 20F50
- DOI: https://doi.org/10.1090/S0002-9939-99-04982-5
- MathSciNet review: 1616621