Poncelet’s theorem in space
HTML articles powered by AMS MathViewer
- by Emma Previato
- Proc. Amer. Math. Soc. 127 (1999), 2547-2556
- DOI: https://doi.org/10.1090/S0002-9939-99-05307-1
- Published electronically: May 4, 1999
- PDF | Request permission
Abstract:
A plane polygon $\mathcal {P}$ inscribed in a conic $C$ and circumscribed to a conic $D$ can be continuously ‘rotated’, as it were. One of the many proofs consists in viewing each side of $\mathcal {P}$ as translation by a torsion point of an elliptic curve. In the $n$-space version, involving torsion points of hyperelliptic Jacobians, there is a $g=(n-1)$-dimensional family of rotations, where $g=\text {genus}$ of the hyperelliptic curve; the polygon is now inscribed in one and circumscribed to $n-1$ quadrics.References
- W. Barth and Th. Bauer, Poncelet theorems, Exposition. Math. 14 (1996), no. 2, 125–144. MR 1395253
- W. Barth and J. Michel, Modular curves and Poncelet polygons, Math. Ann. 295 (1993), no. 1, 25–49. MR 1198840, DOI 10.1007/BF01444875
- H. J. M. Bos, C. Kers, F. Oort, and D. W. Raven, Poncelet’s closure theorem, Exposition. Math. 5 (1987), no. 4, 289–364. MR 917349
- Shau-Jin Chang, Bruno Crespi, and Kang Jie Shi, Elliptical billiard systems and the full Poncelet’s theorem in $n$ dimensions, J. Math. Phys. 34 (1993), no. 6, 2242–2256. MR 1218986, DOI 10.1063/1.530115
- Bruno Crespi, Shau-Jin Chang, and Kang Jie Shi, Elliptical billiards and hyperelliptic functions, J. Math. Phys. 34 (1993), no. 6, 2257–2289. MR 1218987, DOI 10.1063/1.530116
- David A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. (2) 30 (1984), no. 3-4, 275–330. MR 767905
- Shau-Jin Chang and Richard Friedberg, Elliptical billiards and Poncelet’s theorem, J. Math. Phys. 29 (1988), no. 7, 1537–1550. MR 946326, DOI 10.1063/1.527900
- Percy Deift, Luen Chau Li, and Carlos Tomei, Loop groups, discrete versions of some classical integrable systems, and rank 2 extensions, Mem. Amer. Math. Soc. 100 (1992), no. 479, viii+101. MR 1124113, DOI 10.1090/memo/0479
- U. V. Desale and S. Ramanan, Classification of vector bundles of rank $2$ on hyperelliptic curves, Invent. Math. 38 (1976/77), no. 2, 161–185. MR 429897, DOI 10.1007/BF01408570
- Ron Donagi, Group law on the intersection of two quadrics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 2, 217–239. MR 581142
- Bert van Geemen and Emma Previato, On the Hitchin system, Duke Math. J. 85 (1996), no. 3, 659–683. MR 1422361, DOI 10.1215/S0012-7094-96-08525-7
- Phillip Griffiths and Joe Harris, A Poncelet theorem in space, Comment. Math. Helv. 52 (1977), no. 2, 145–160. MR 498606, DOI 10.1007/BF02567361
- Phillip Griffiths and Joseph Harris, On Cayley’s explicit solution to Poncelet’s porism, Enseign. Math. (2) 24 (1978), no. 1-2, 31–40. MR 497281
- Joe Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685–724. MR 552521
- C.M. Jessop, A treatise on the line complex, Cambridge University Press, 1903.
- Horst Knörrer, Geodesics on the ellipsoid, Invent. Math. 59 (1980), no. 2, 119–143. MR 577358, DOI 10.1007/BF01390041
- Horst Knörrer, Geodesics on quadrics and a mechanical problem of C. Neumann, J. Reine Angew. Math. 334 (1982), 69–78. MR 667450, DOI 10.1515/crll.1982.334.69
- Valeriĭ V. Kozlov and Dmitriĭ V. Treshchëv, Billiards, Translations of Mathematical Monographs, vol. 89, American Mathematical Society, Providence, RI, 1991. A genetic introduction to the dynamics of systems with impacts; Translated from the Russian by J. R. Schulenberger. MR 1118378, DOI 10.1090/mmono/089
- H. P. McKean and P. van Moerbeke, Hill and Toda curves, Comm. Pure Appl. Math. 33 (1980), no. 1, 23–42. MR 544043, DOI 10.1002/cpa.3160330103
- J. Moser, Geometry of quadrics and spectral theory, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, New York-Berlin, 1980, pp. 147–188. MR 609560
- P. E. Newstead, Stable bundles of rank $2$ and odd degree over a curve of genus $2$, Topology 7 (1968), 205–215. MR 237500, DOI 10.1016/0040-9383(68)90001-3
- S. Ramanan, Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci. Math. Sci. 90 (1981), no. 2, 151–166. MR 653952, DOI 10.1007/BF02837285
- M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), no. 1, 207–233 (French). MR 688265, DOI 10.1007/BF01393342
- M. Reid, The complete intersection of two or more quadrics, Thesis, Cambridge Univ. 1972.
- Frank Sottile, Enumerative geometry for the real Grassmannian of lines in projective space, Duke Math. J. 87 (1997), no. 1, 59–85. MR 1440063, DOI 10.1215/S0012-7094-97-08703-2
- G. Trautmann, Poncelet curves and associated theta characteristics, Exposition. Math. 6 (1988), no. 1, 29–64. MR 927588
- A. P. Veselov, Integrable systems with discrete time, and difference operators, Funktsional. Anal. i Prilozhen. 22 (1988), no. 2, 1–13, 96 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 2, 83–93. MR 947601, DOI 10.1007/BF01077598
Bibliographic Information
- Emma Previato
- Affiliation: Department of Mathematics, Boston University, Boston, Massachusetts 02215
- MR Author ID: 142015
- Email: ep@math.bu.edu
- Received by editor(s): May 20, 1997
- Received by editor(s) in revised form: September 28, 1997
- Published electronically: May 4, 1999
- Additional Notes: The author’s research was partly supported by NSA grant MDA904-95-H-1031
- Communicated by: Ron Donagi
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2547-2556
- MSC (1991): Primary 14H40; Secondary 58F07
- DOI: https://doi.org/10.1090/S0002-9939-99-05307-1
- MathSciNet review: 1662198