PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 9, Pages 2779–2782 S 0002-9939(99)05344-7 Article electronically published on May 4, 1999

A COMPOSITION FORMULA IN THE RANK TWO FREE GROUP

FRANCISCO GONZÁLEZ-ACUÑA AND ARTURO RAMÍREZ

(Communicated by Ronald A. Fintushel)

ABSTRACT. Using the fundamental group of a punctured torus, a free group F of rank two, and the fact that the natural eipmorphism from AutF onto Aut(F/F') has as kernel the group of inner automorphisms of F, we describe representatives of the conjugacy classes of generating pairs of F and give explicit relations between them.

Let F = F(S, T) be the free group on S and T. By a theorem of Nielsen [N] (see [LS, p. 25]) the natural epimorphism from AutF onto Aut(F/F') ($= GL(2,\mathbb{Z})$) has as kernel the group of inner automorphisms of F. From this it follows easily that, if α is the abelianization homomorphism from F onto F/F' ($= \mathbb{Z}^2$) and $\mathbf{a} \in \mathbb{Z}^2$ is primitive¹, then the inverse image of \mathbf{a} under α is a conjugacy class of primitive elements. Also, if $(\mathbf{a}_1, \mathbf{a}_2)$ is a basis of \mathbb{Z}^2 , then, up to conjugacy, there is a unique basis (f_1, f_2) of F such that $(f_i)\alpha = \mathbf{a}_i$ (i = 1, 2). (The basis (f_1, f_2) is conjugate to (g_1, g_2) if there exists $w \in F$ such that $w^{-1}f_iw = g_i$ (i = 1, 2)).

In the important paper [OZ], Osborne and Zieschang define explicitly primitive words $W_{m,n} \in F(S,T)$, where *m* and *n* are relatively prime integers, such that $(W_{m,n})\alpha = (m,n)$. They also state that if mn - pq = 1, then $(W_{m,n}, W_{p,q})$ is a basis of *F*; this, while correct for nonnegative values of m, n, p, q, is not valid in general (for example $W_{-2,-3}$ and $W_{1,1}$ do not generate *F*). A composition formula is also stated in [OZ, Thm. 3.5] but this, even with the correction of indices in [LTZ, 2.1.3], is incorrect in general.

In the present article we consider elements $V_{\mathbf{a}}^{\varepsilon}$ of F for $\mathbf{a} = (m, n) \in \mathbb{Z}^2$ and $\varepsilon \in \mathcal{D} \subset \mathbb{R}^2$ where \mathcal{D} is the complement of the union of all the lines that intersect \mathbb{Z}^2 in more than one point. If gcd(m, n) = 1, then $V_{(m,n)}^{\varepsilon}$ is conjugate to $W_{m,n}$. We show in Theorem 1.i) that $(V_{\mathbf{a}}^{\varepsilon}, V_{\mathbf{b}}^{\varepsilon})$ is a basis of F, if $\mathbb{Z}^2 = \langle \mathbf{a}, \mathbf{b} \rangle$, and obtain in Theorem 1.ii) a composition formula. Everything is obtained by applying the fundamental group functor π to the punctured torus.

Denote by \mathbb{T} the torus $\mathbb{R}^2/\mathbb{Z}^2$, by \mathbb{T}_0 the punctured torus $(\mathbb{R}^2 - \mathbb{Z}^2) / \mathbb{Z}^2$ and by $\rho : \mathbb{R}^2 - \mathbb{Z}^2 \to \mathbb{T}_0$ the natural projection. If $\mathbf{a} \in \mathbb{Z}^2$ and $\varepsilon \in \mathcal{D}$, then denote $(\varepsilon)\rho$ by $\overline{\varepsilon}$ and define $\gamma_{\mathbf{a}}^{\varepsilon} \in \pi(\mathbb{T}_0, \overline{\varepsilon})$ as the homotopy class of the loop $(\varepsilon + t\mathbf{a})\rho$, $t \in [0, 1]$. Denote $\gamma_{(1,0)}^{\varepsilon}$ (resp. $\gamma_{(0,1)}^{\varepsilon}$) by S_{ε} (resp. T_{ε}). There is an isomorphism

©1999 American Mathematical Society

Received by the editors September 15, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57M07, 20E05.

Key words and phrases. Rank two free group, primitive words.

¹An element f of a rank two group G is primitive if there exists $g \in G$ such that f and g generate G.

 $\varphi_{\varepsilon}: F(S,T) \to \pi(\mathbb{T}_0,\overline{\varepsilon})$ sending S to S_{ε} and T to T_{ε} . Define $V_{\mathbf{a}}^{\varepsilon} \in F(S,T)$ by $(V_{\mathbf{a}}^{\varepsilon})\varphi_{\varepsilon} = \gamma_{\mathbf{a}}^{\varepsilon}$. Notice that $(V_{\mathbf{a}}^{\varepsilon})\alpha = \mathbf{a}$ since the inclusion induced homomorphism $\pi(\mathbb{T}_0,\overline{\varepsilon}) \to \pi(\mathbb{T},\overline{\varepsilon})$ is the abelianization.

In comparison with [OZ, 4.2] $V_{\mathbf{a}}^{\varepsilon}$ is represented by the word obtained by traveling along the segment, in $\mathbb{R}^2 - \mathbb{Z}^2$, from ε to $\varepsilon + \mathbf{a}$ and writing S (resp. S⁻¹) whenever we cross a component of $\mathbb{Z} \times \mathbb{R}$ from left to right (resp. from right to left) and writing T (resp. T^{-1}) whenever we cross a component of $\mathbb{R} \times \mathbb{Z}$ from below (resp. from above).

A matrix $M = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \in GL(2,\mathbb{Z})$ defines a linear automorphism of $(\mathbb{R}^2,\mathbb{Z}^2)$ that, for any $\varepsilon \in \mathcal{D}$, induces a homeomorphism $\mu_M^{\varepsilon} : (\mathbb{T}_0, \overline{\varepsilon}) \to (\mathbb{T}_0, \overline{\varepsilon}M)$. This induces ν_M^{ε} : $\begin{array}{l} \pi(\mathbb{T}_0,\overline{\varepsilon}) \xrightarrow{\sim} \pi(\mathbb{T}_0,\overline{\varepsilon}M) \text{ and an automorphism } \mu_M^{-\epsilon},(\mathbb{T}_0,\varepsilon) \xrightarrow{\sim} (\mathbb{T}_0,\varepsilon M). \text{ This induces a molecular phism } \mu_M^{\varepsilon},(\mathbb{T}_0,\varepsilon) \xrightarrow{\sim} (\mathbb{T}_0,\varepsilon M). \text{ This induces } \mu_M^{\varepsilon} \xrightarrow{\sim} (\mathbb{T}_0,\overline{\varepsilon}M). \text{ We have } \gamma_{\mathbf{c}}^{\varepsilon}\nu_M^{\varepsilon} = \gamma_{\mathbf{c}M}^{\varepsilon M} \text{ since } \rho\mu_M^{\varepsilon} = M\rho \text{ and therefore } V_{\mathbf{c}}^{\varepsilon}\Psi_M^{\varepsilon} = V_{\mathbf{c}M}^{\varepsilon}M \text{ for all } \mathbf{c} \in \mathbb{Z}^2 \text{ (this equality was suggested by the referee). In particular } (S)\Psi_M^{\varepsilon} = V_{\mathbf{a}}^{\varepsilon M} \text{ and } (T)\Psi_M^{\varepsilon} = V_{\mathbf{b}}^{\varepsilon M}. \text{ Notice that, for any word } W(S,T) \text{ we have } (W(S,T))\Psi_M^{\varepsilon} = W((S)\Psi_M^{\varepsilon},(T)\Psi_M^{\varepsilon}) = W(V_{\mathbf{a}}^{\varepsilon M},V_{\mathbf{b}}^{\varepsilon M}). \text{ One has the following composition theorem.} \end{array}$

Theorem 1. We have: i) If
$$\langle \mathbf{a}, \mathbf{b} \rangle = \mathbb{Z}^2$$
 and $\varepsilon \in \mathcal{D}$, then $\langle V_{\mathbf{a}}^{\varepsilon}, V_{\mathbf{b}}^{\varepsilon} \rangle = F$.
ii) If $M, N \in GL(2, \mathbb{Z})$ and $\varepsilon \in \mathcal{D}$, then $\Psi_{NM}^{\varepsilon} = \Psi_N^{\varepsilon} \Psi_M^{\varepsilon N}$.
iii) If $\mathbf{c} \in \mathbb{Z}^2$, then $V_{\mathbf{c}M}^{\varepsilon} = V_{\mathbf{c}}^{\varepsilon M^{-1}} (V_{\mathbf{a}}^{\varepsilon}, V_{\mathbf{b}}^{\varepsilon})$ where $M = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \in GL(2, \mathbb{Z})$.

 $\begin{array}{l} \textit{Proof. Since } (S)\Psi_{M}^{\varepsilon M^{-1}} = V_{\mathbf{a}}^{\varepsilon} \text{ and } (T)\Psi_{M}^{\varepsilon M^{-1}} = V_{\mathbf{b}}^{\varepsilon}, \text{ i) follows.} \\ \text{As } \mu_{NM}^{\varepsilon} = \mu_{N}^{\varepsilon} \mu_{M}^{\varepsilon N} \text{ we obtain } \nu_{NM}^{\varepsilon} = \nu_{N}^{\varepsilon} \nu_{M}^{\varepsilon N}; \text{ therefore } \Psi_{NM}^{\varepsilon} = \varphi_{\varepsilon} \nu_{NM}^{\varepsilon} \varphi_{\varepsilon NM}^{-1} = \varphi_{\varepsilon} \nu_{N}^{\varepsilon} \nu_{M}^{\varepsilon N} \varphi_{\varepsilon N}^{-1} \varphi_{\varepsilon N} \nu_{M}^{\varepsilon N} \varphi_{\varepsilon N}^{-1} = \Psi_{N}^{\varepsilon} \Psi_{M}^{\varepsilon N} \text{ which proves ii).} \\ \text{The identities } (W(S,T))\Psi_{M}^{\varepsilon} = W(V_{\mathbf{a}}^{\varepsilon M},V_{\mathbf{b}}^{\varepsilon M}) \text{ and } V_{\mathbf{c}}^{\varepsilon} \Psi_{M}^{\varepsilon} = V_{\mathbf{c}M}^{\varepsilon M} \text{ give } V_{\mathbf{c}M}^{\varepsilon M} = V_{\mathbf{c}}^{\varepsilon} (V_{\mathbf{a}}^{\varepsilon M},V_{\mathbf{b}}^{\varepsilon M}) \text{ that is equivalent to iii).} \end{array}$

Remarks. 1. By varying ε' along the segment from ε to $\varepsilon + \mathbf{a}$ we obtain as $V_{(m,n)}^{\varepsilon'}$ all the cyclic permutations of $V_{(m,n)}^{\varepsilon}$; also if ε' , $\varepsilon \in \mathcal{D}$, then $V_{(m,n)}^{\varepsilon'}$ is a cyclic permutation of $V_{(m,n)}^{\varepsilon}$ since they are conjugate and cyclically reduced. Hence, if gcd(m,n) = 1, then $\{V_{(m,n)}^{\varepsilon} : \varepsilon \in \mathcal{D}\}$ is the set of the primitive elements of F whose image under α is (m, n) and have minimal length (equal to |m| + |n|); this set, which contains $W_{m,n}$, has cardinality |m| + |n| since $V_{(m,n)}^{\varepsilon}$ is not a proper power (cf. [OZ, 4.2]).

2. In Theorem 1.ii) one needs different superscripts: There is no collection $\{\Psi_M \in AutF : M \in GL(2,\mathbb{Z})\}$ such that the image of any Ψ_M under $\lambda : AutF \to$ OutF is M and $\Psi_{NM} = \Psi_N \Psi_M$. That is, λ does not split since there are elements of order 6 in OutF but not in AutF (see [LS, I.4.6]).

However there is a collection $\{\Psi_M \in AutF : M \in GL^+(2,\mathbb{Z})\}$, where $GL^+(2,\mathbb{Z})$ $= \{ \begin{pmatrix} m & n \\ p & q \end{pmatrix} \in GL(2, Z) : m \ge 0, n \ge 0, p \ge 0, q \ge 0 \}, \text{ such that } \lambda(\Psi_M) = M \text{ and } \lambda(\Psi_$ $\Psi_{NM} = \Psi_N \Psi_M$. To see this observe that $SL^+(2,\mathbb{Z})$, the set of matrices in $SL(2,\mathbb{Z})$ with nonnegative entries, is a free monoid on A and BAB where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B =$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ [CMZ, Lemma 3.5] and from this one obtains the monoid presentation (A, B): B^2) of $GL^+(2, \mathbb{Z})$, that is, every element of $GL^+(2, \mathbb{Z})$ can be written uniquely as a word in A and B where the exponents of A are positive and the exponents of Bare 1. One can define $(S)\Psi_A = ST$, $(T)\Psi_A = T$, $(S)\Psi_B = T$, $(T)\Psi_B = S$ and if $M = B^{\delta_1}(\prod_{i=1}^n A^{e_i}B)B^{\delta_2}$, n > 0, $e_i > 0$ (i = 1, ..., n), $\delta_j = 0, 1$ (j = 1, 2), we define $\Psi_M = \Psi_B^{\delta_1}(\prod_{i=1}^n \Psi_A^{e_i} \Psi_B) \Psi_B^{\delta_2}$. The Ψ 's have the desired properties.

2780

3. By Theorem 1.iii) if $M = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$ and $(\eta_1, \eta_2) = \varepsilon M^{-1}$, then we have a general addition formula that implies Theorem 1.3 of [OZ]:

$$V_{\mathbf{a}+\mathbf{b}}^{\varepsilon} = V_{(1,1)}^{(\eta_1,\eta_2)}(V_{\mathbf{a}}^{\varepsilon}, V_{\mathbf{b}}^{\varepsilon}) = \begin{cases} V_{\mathbf{a}}^{\varepsilon} V_{\mathbf{b}}^{\varepsilon} & \text{if } \eta_1 - [\eta_1] > \eta_2 - [\eta_2], \\ V_{\mathbf{b}}^{\varepsilon} V_{\mathbf{a}}^{\varepsilon} & \text{if } \eta_1 - [\eta_1] < \eta_2 - [\eta_2]. \end{cases}$$

4. It may be desirable to modify slightly the definition of the words $W_{m,n}$ given in [OZ] as follows: If $n \ge 0$ define the $W_{m,n}$ as in [OZ], but if n < 0 define $W_{m,n}$ as $W_{-m,-n}^{-1}$ not $W_{m,-n}(S, T^{-1})$, as stated in [OZ]. With this modification the analog of Theorem 1.i) holds, that is, if $mq - np = \pm 1$, then $\langle W_{m,n}, W_{p,q} \rangle = F$.

5. If we let ε be a pair of infinitesimals [SL] that does not lie in a line in $*\mathbb{R}^2$ intersecting \mathbb{Z}^2 in more than one point and if $\mathbf{a} \in \mathbb{Z}^2$, then $V_{\mathbf{a}}^{\varepsilon}$ can be defined as in the fifth paragraph. Again $\langle V_{\mathbf{a}}^{\varepsilon}, V_{\mathbf{b}}^{\varepsilon} \rangle = F$ if $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbb{Z}^2$ and the assertion 1.iii) is still valid. Then, with our modification of the definition of $W_{m,n}$ given in the previous remark, $W_{m,n} = V_{(m,n)}^{(-\delta i^2, -i)}$ where *i* is a positive infinitesimal and

$$\delta = \begin{cases} 1 \text{ if } mn \ge 0, \\ -1 \text{ if } mn < 0. \end{cases}$$

If $kl \neq 0$ and gcd(k,l) = 1, the axes and the line through the origin and (k,l)divide the plane $*\mathbb{R}^2$ into six open regions. If the infinitesimal pairs ε and ε' belong to the same region, then $V_{(k,l)}^{\varepsilon} = V_{(k,l)}^{\varepsilon'}$. If $V'_{k,l}$ is the word defined by the open segment from (0,0) to (k,l) (cf. [OZ, Definition 2.1]), $\delta_1 = sgn k$ and $\delta_2 = sgn l$, then $V_{(k,l)}^{\varepsilon}$ is one of the words $S^{\delta_1}T^{\delta_2}V'_{k,l}$, $T^{\delta_2}S^{\delta_1}V'_{k,l}$, $S^{\delta_1}V'_{k,l}T^{\delta_2}$, $T^{\delta_2}V'_{k,l}S^{\delta_1}$, $V'_{k,l}S^{\delta_1}T^{\delta_2}$ or $V'_{k,l}T^{\delta_2}S^{\delta_1}$ depending on the region in which ε lies.

Let $\overrightarrow{W}_{k,l} = V_{k,l}^{i(l+i,-k+\sqrt{2}i)}$ and $\overleftarrow{W}_{k,l} = V_{k,l}^{-i(l+i,-k+\sqrt{2}i)}$, thus, if k > 0, l > 0 and $\gcd(k,l) = 1$, then $\overrightarrow{W}_{k,l} = TV_{k,l}'S$ and $\overleftarrow{W}_{k,l} = SV_{k,l}'T$. Now, if k, l, n and q are nonnegative integers, m > 0, p > 0 with $\gcd(k,l) = 1$ and $mq - np = d = \pm 1$, then

$$W_{km+lp,kn+lq} = \begin{cases} \overline{W}_{k,l} (W_{m,n}, W_{p,q}) & \text{if } d = 1, \\ \overline{W}_{k,l} (W_{m,n}, W_{p,q}) & \text{if } d = -1. \end{cases}$$

This follows from Theorem 1.iii) taking $\varepsilon = (-i^2, -i)$ and $M = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$; then $V_{(k,l)}^{\varepsilon M^{-1}} = \begin{cases} \overline{W}_{k,l} & \text{if } d = 1, \\ \overline{W}_{k,l} & \text{if } d = -1. \end{cases}$ This gives the modification needed in [OZ, Theorem 3.5] and [LTZ, 2.1.3].

We thank the referee for the suggestions, which improved the presentation of the paper.

References

- [CMZ] M. Cohen, W. Metzler and A. Zimmermann, What Does a Basis of F(a,b) Look Like?, Math. Ann. 257 (1981), 435-445. MR 82m:20028
- [LTZ] M. Lustig, E-M. Thiele and H. Zieschang, Primitive Elements in the Free Product of Two Finite Cyclic Groups, Abh. Math. Sem. Univ. Hamburg 65 (1995), 277-281. MR 96g:20035
- [LS] R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer-Verlag 1977. MR 58:28182
- [N] J. Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385-397.

- [OZ] R. Osborne and H. Zieschang, Primitives in the Free Group on Two Generators, Invent. Math. 63 (1981), 17-24. MR 82i:20042
- [SL] K. Stroyan and W. Luxemburg, Introduction to the theory of infinitesimals, Academic Press 1976. MR 58:10429

INSTITUTO DE MATEMÁTICAS, UNAM, MÉXICO D.F. 04510, MEXICO; CIMAT, GUANJUATO AP 402 GUANAJUATO 36000, MÉXICO

 $E\text{-}mail\ address: \texttt{fico@matem.unam.mx}$

2782

CIMAT, GUANJUATO AP 402 GUANAJUATO 36000, MÉXICO *E-mail address*: ramirez@fractal.cimat.mx