A COMPOSITION FORMULA
IN THE RANK TWO FREE GROUP

FRANCISCO GONZÁLEZ-ACUÑA AND ARTURO RAMÍREZ

(Communicated by Ronald A. Fintushel)

Abstract. Using the fundamental group of a punctured torus, a free group F of rank two, and the fact that the natural epimorphism from $\text{Aut}(F)$ onto $\text{Aut}(F/F')$ has as kernel the group of inner automorphisms of F, we describe representatives of the conjugacy classes of generating pairs of F and give explicit relations between them.

Let $F = F(S,T)$ be the free group on S and T. By a theorem of Nielsen [N] (see [LS, p. 25]) the natural epimorphism from $\text{Aut}(F)$ onto $\text{Aut}(F/F')$ ($= \text{GL}(2,\mathbb{Z})$) has as kernel the group of inner automorphisms of F. From this it follows easily that, if α is the abelianization homomorphism from F onto F/F' ($= \mathbb{Z}^2$) and $a \in \mathbb{Z}^2$ is primitive1, then the inverse image of a under α is a conjugacy class of primitive elements. Also, if (a_1, a_2) is a basis of \mathbb{Z}^2, then, up to conjugacy, there is a unique basis (f_1, f_2) of F such that $(f_i)\alpha = a_i$ ($i = 1, 2$). (The basis (f_1, f_2) is conjugate to (g_1, g_2) if there exists $w \in F$ such that $w^{-1}f_iw = g_i$ ($i = 1, 2$)).

In the important paper [OZ], Osborne and Zieschang define explicitly primitive words $W_{m,n} \in F(S,T)$, where m and n are relatively prime integers, such that $(W_{m,n})\alpha = (m,n)$. They also state that if $mn - pq = 1$, then $(W_{m,n}W_{p,q})$ is a basis of F; this, while correct for nonnegative values of m, n, p, q, is not valid in general (for example $W_{-2,-3}$ and $W_{1,1}$ do not generate F). A composition formula is also stated in [OZ, Thm. 3.5] but this, even with the correction of indices in [LTZ, 2.1.3], is incorrect in general.

In the present article we consider elements V_{a}^ε of F for $a = (m,n) \in \mathbb{Z}^2$ and $\varepsilon \in \mathcal{D} \subset \mathbb{R}^2$ where \mathcal{D} is the complement of the union of all the lines that intersect \mathbb{Z}^2 in more than one point. If $\gcd(m,n) = 1$, then $V_{(m,n)}^\varepsilon$ is conjugate to $W_{m,n}$. We show in Theorem 1.i) that $(V_{a}^\varepsilon, V_{b}^\alpha)$ is a basis of F, if $\mathbb{Z}^2 = \langle a, b \rangle$, and obtain in Theorem 1.ii) a composition formula. Everything is obtained by applying the fundamental group functor π to the punctured torus.

Denote by T the torus $\mathbb{R}^2/\mathbb{Z}^2$, by T_0 the punctured torus $(\mathbb{R}^2 - \mathbb{Z}^2)/\mathbb{Z}^2$ and by $\rho : \mathbb{R}^2 - \mathbb{Z}^2 \to T_0$ the natural projection. If $a \in \mathbb{Z}^2$ and $\varepsilon \in \mathcal{D}$, then denote $(\varepsilon)\rho$ by π and define $\gamma_a^\varepsilon \in \pi(T_0, \pi)$ as the homotopy class of the loop $(\varepsilon + t a)\rho$, $t \in [0,1]$. Denote $\gamma_{(1,0)}^\varepsilon$ (resp. $\gamma_{(0,1)}^\varepsilon$) by S_{ε} (resp. T_{ε}). There is an isomorphism

Received by the editors September 15, 1997.
1991 Mathematics Subject Classification. Primary 57M07, 20E05.
Key words and phrases. Rank two free group, primitive words.

1An element f of a rank two group G is primitive if there exists $g \in G$ such that f and g generate G.

©1999 American Mathematical Society

2779
\(\varphi_e : F(S,T) \to \pi(T_0, \pi) \) sending \(S \) to \(S_e \) and \(T \) to \(T_e \). Define \(V_e^a \in F(S,T) \) by \((V_e^a)^a = \gamma_e^a \). Notice that \((V_e^a) \alpha = a \) since the inclusion induced homomorphism \(\pi(T_0, \pi) \to \pi(T, \pi) \) is the abelianization.

In comparison with \([OZ, 4.2]\) \(V_e^a \) is represented by the word obtained by traveling along the segment, in \(\mathbb{R}^2 - \mathbb{Z}^2 \), from \(e \) to \(e + a \) and writing \(S \) (resp. \(S^{-1} \)) whenever we cross a component of \(\mathbb{Z} \times \mathbb{R} \) from left to right (resp. from right to left) and writing \(T \) (resp. \(T^{-1} \)) whenever we cross a component of \(\mathbb{R} \times \mathbb{Z} \) from below (resp. from above).

A matrix \(M = \binom{a}{b} \in GL(2, \mathbb{Z}) \) defines a linear automorphism of \((\mathbb{R}^2, \mathbb{Z}^2)\) that, for any \(e \in D \), induces a homeomorphism \(\mu_M : (T_0, \pi) \to (T, \pi) \). This induces \(\nu_M : \pi(T_0, \pi) \to \pi(T, \pi) \) and an automorphism \(\Psi^M_M \) of \(F \) defined by \(\Psi^M_M = \varphi_e \nu_M \varphi_e^{-1} \).

We have \(\gamma_e \nu_M = \gamma_e M \) since \(\mu_M = M \rho \) and therefore \(V_e^c \Psi^M_M = V_e^c M \) for all \(c \in \mathbb{Z}^2 \) (this equality was suggested by the referee). In particular \((S)\Psi^M_M = V_e^c M \) and \((T)\Psi^M_M = V_e^c M \). Notice that, for any word \(W(S,T) \) we have \((W(S,T))\Psi^M_M = W((S)\Psi^M_M,(T)\Psi^M_M) = W(V_e^c M, V_e^c M) \). One has the following composition theorem.

Theorem 1. We have: i) If \((a, b) = \mathbb{Z}^2 \) and \(e \in D \), then \((V_e^a, V_e^b) = F \).

ii) If \(M, N \in GL(2, \mathbb{Z}) \) and \(e \in D \), then \(\Psi^M_N M = \Psi^N_N \Psi^M_M \).

iii) If \(c \in \mathbb{Z}^2 \), then \(V_e^c M = V_e^c M^{-1} (V_e^a, V_e^b) \) where \(M = \binom{a}{b} \in GL(2, \mathbb{Z}) \).

Proof. Since \((S)\Psi^M_M^{-1} = V_e^a \) and \((T)\Psi^M_M^{-1} = V_e^b \) i) follows.

As \(\mu^M_N = \mu^N_M \mu_M^N \) we obtain \(\nu^e_M = \nu^e_N \nu^e_M \); therefore \(\Psi^M_N = \varphi_e \nu^e_N \nu^e_M \varphi_e^{-1} = \varphi_e \nu^e_M \nu^e_N \nu^e_M \varphi_e \), which proves ii).

The identities \((W(S,T))\Psi^M_M = W(V_e^c M, V_e^c M) \) and \(V_e^c M = V_e^c M^{-1} (V_e^a, V_e^b) \) are equivalent to iii). \(\square \)

Remarks. 1. By varying \(e' \) along the segment from \(e \) to \(e + a \) we obtain all the cyclic permutations of \(V_{(m,n)}^e \); also if \(e', e \in D \), then \(V_{(m,n)}^{e'} \) is a cyclic permutation of \(V_{(m,n)}^e \) since they are conjugate and cyclically reduced. Hence, if \(\gcd(m,n) = 1 \), then \(\{V_{(m,n)}^e : e \in D\} \) is the set of the primitive elements of \(F \) whose image under \(\alpha \) is \((m,n)\) and have minimal length (equal to \(|m| + |n| \)); this set, which contains \(W_{m,n} \), has cardinality \(|m| + |n| \) since \(V_{(m,n)}^e \) is not a proper power (cf. \([OZ, 4.2]\)).

2. In Theorem 1.ii) one needs different superscripts: There is no collection \(\{\Psi_M \in Aut F : M \in GL(2, \mathbb{Z})\} \) such that the image of any \(\Psi_M \) under \(\lambda : Aut F \to Out F \) is \(M \) and \(\Psi_N M = \Psi_N \Psi_M \). That is, \(\lambda \) does not split since there are elements of order 6 in \(Out F \) but not in \(Aut F \) (see \([LS, 1.4.6]\)).

However there is a collection \(\{\Psi_M \in Aut F : M \in GL^+(2, \mathbb{Z})\} \), where \(GL^+(2, \mathbb{Z}) = \{A \in GL(2, \mathbb{Z}) : m \geq 0, n \geq 0, p \geq 0, q \geq 0\} \), such that \(\lambda(\Psi_M) = M \) and \(\Psi_N M = \Psi_N \Psi_M \). To see this observe that \(SL^+(2, \mathbb{Z}) \), the set of matrices in \(SL(2, \mathbb{Z}) \) with nonnegative entries, is a free monoid on \(A \) and \(BAB \) where \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \), \(B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) [CMZ, Lemma 3.5] and from this one obtains the monoid presentation \(\{A, B, B^2\} \) of \(GL^+(2, \mathbb{Z}) \), that is, every element of \(GL^+(2, \mathbb{Z}) \) can be written uniquely as a word in \(A \) and \(B \) where the exponents of \(A \) are positive and the exponents of \(B \) are 1. One can define \((S)\Psi_A = ST, (T)\Psi_A = T, (S)\Psi_B = T, (T)\Psi_B = S \) and if \(M = B^{c_1} (\prod_{i=1}^{l} A^{e_i} B^{B_{2i}}), n > 0, c_i > 0 (i = 1, \ldots, n), \delta_j = 0, 1 (j = 1, 2) \), we define \(\Psi_M = \Psi_B^j (\prod_{i=1}^{l} A^{e_i} \Psi_B \Psi_B^j) \). The \(\Psi \)’s have the desired properties.
3. By Theorem 1.iii) if $M = (\begin{smallmatrix} a \\ b \end{smallmatrix})$ and $(\eta_1, \eta_2) = \varepsilon M^{-1}$, then we have a general addition formula that implies Theorem 1.3 of [OZ]:

$$V_{a+b} = V_{(1,1)}^{(\eta_1, \eta_2)} (V_a, V_b) = \begin{cases} V_a V_b^{\varepsilon} & \text{if } \eta_1 - [\eta_1] > \eta_2 - [\eta_2], \\ V_a V_b^{\varepsilon} & \text{if } \eta_1 - [\eta_1] < \eta_2 - [\eta_2]. \end{cases}$$

4. It may be desirable to modify slightly the definition of the words $W_{m,n}$ given in [OZ] as follows: If $n \geq 0$ define the $W_{m,n}$ as in [OZ], but if $n < 0$ define $W_{m,n}$ as

$$W = \begin{cases} \text{not } & \text{if } mn \geq 0, \\ 1 & \text{if } mn < 0. \end{cases}$$

If $kl \neq 0$ and $\gcd(k,l) = 1$, the axes and the line through the origin and (k,l) divide the plane \mathbb{R}^2 into six open regions. If the infinitesimal pairs ε and ε' belong to the same region, then $V_{(k,l)}' = V_{(k,l)}''$. If $V_{(k,l)}'$ is the word defined by the open segment from $(0,0)$ to (k,l) (cf. [OZ, Definition 2.1]), $\delta_1 = \text{sgn } k$ and $\delta_2 = \text{sgn } l$, then $V_{(k,l)}$ is one of the words $S^{\delta_1} T^{\delta_2} V_{(k,l)}'$, $S^{\delta_1} V_{(k,l)}' T^{\delta_2}$, $T^{\delta_2} V_{(k,l)}' S^{\delta_1}$, $V_{(k,l)} S T^{\delta_2}$ or $V_{(k,l)} T^{\delta_2} S^{\delta_1}$ depending on the region in which ε lies.

Let $W_{k,l} = V_{(l+i,-k+\sqrt{2}l)}$ and $W_{k,l} = V_{(l+i,-k+\sqrt{2}l)}^{-1}$, thus, if $k > 0$, $l > 0$ and $\gcd(k,l) = 1$, then $W_{k,l} T = TV_{k,l}' S$ and $W_{k,l} T = SV_{k,l}' T$. Now, if k, l, n and q are nonnegative integers, $m > 0$, $p > 0$ with $\gcd(k,l) = 1$ and $mq - np = d = \pm 1$, then

$$W_{km+lp,kn+lq} = \begin{cases} W_{k,l} (W_{m,n}, W_{p,q}) & \text{if } d = 1, \\ W_{k,l}^{-1} (W_{m,n}, W_{p,q}) & \text{if } d = -1. \end{cases}$$

This follows from Theorem 1.iii) taking $\varepsilon = (-i^2, -i)$ and $M = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$; then

$$V_{(k,l)}^{M^{-1}} = \begin{cases} W_{k,l} & \text{if } d = 1, \\ W_{k,l}^{-1} & \text{if } d = -1. \end{cases}$$

This gives the modification needed in [OZ, Theorem 3.5] and [LTZ, 2.1.3].

We thank the referee for the suggestions, which improved the presentation of the paper.

REFERENCES

Instituto de Matemáticas, UNAM, México D.F. 04510, México; CIMAT, Guanajuato AP 402 Guanajuato 36000, México

E-mail address: fico@matem.unam.mx

CIMAT, Guanajuato AP 402 Guanajuato 36000, México

E-mail address: ramirez@fractal.cimat.mx