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Abstract. Using the fundamental group of a punctured torus, a free group
F of rank two, and the fact that the natural eipmorphism from AutF onto
Aut(F/F ′) has as kernel the group of inner automorphisms of F , we describe
representatives of the conjugacy classes of generating pairs of F and give ex-
plicit relations between them.

Let F = F (S, T ) be the free group on S and T . By a theorem of Nielsen [N] (see
[LS, p. 25]) the natural epimorphism from AutF onto Aut(F/F ′) ( = GL(2, Z)) has
as kernel the group of inner automorphisms of F . From this it follows easily that,
if α is the abelianization homomorphism from F onto F/F ′ (= Z2) and a ∈ Z2 is
primitive1, then the inverse image of a under α is a conjugacy class of primitive
elements. Also, if (a1, a2) is a basis of Z2, then, up to conjugacy, there is a unique
basis (f1, f2) of F such that (fi)α = ai (i = 1, 2). (The basis (f1, f2) is conjugate
to (g1, g2) if there exists w ∈ F such that w−1fiw = gi (i = 1, 2)).

In the important paper [OZ], Osborne and Zieschang define explicitly primitive
words Wm,n ∈ F (S, T ), where m and n are relatively prime integers, such that
(Wm,n)α = (m, n). They also state that if mn − pq = 1, then (Wm,n, Wp,q) is a
basis of F ; this, while correct for nonnegative values of m, n, p, q, is not valid in
general (for example W−2,−3 and W1,1 do not generate F ). A composition formula
is also stated in [OZ, Thm. 3.5] but this, even with the correction of indices in
[LTZ, 2.1.3], is incorrect in general.

In the present article we consider elements V ε
a of F for a = (m, n) ∈ Z2 and

ε ∈ D ⊂ R2 where D is the complement of the union of all the lines that intersect
Z2 in more than one point. If gcd(m, n) = 1, then V ε

(m,n) is conjugate to Wm,n.
We show in Theorem 1.i) that (V ε

a , V ε
b ) is a basis of F , if Z2 = 〈a,b〉, and obtain

in Theorem 1.ii) a composition formula. Everything is obtained by applying the
fundamental group functor π to the punctured torus.

Denote by T the torus R2/ Z2, by T0 the punctured torus (R2 − Z2) / Z2 and
by ρ : R2 − Z2 → T0 the natural projection. If a ∈ Z2 and ε ∈ D, then denote
(ε)ρ by ε and define γε

a ∈ π(T0, ε) as the homotopy class of the loop (ε+ta)ρ,
t ∈ [0, 1]. Denote γε

(1,0) (resp. γε
(0,1)) by Sε (resp. Tε). There is an isomorphism
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ϕε : F (S, T ) → π(T0, ε) sending S to Sε and T to Tε. Define V ε
a ∈ F (S, T ) by

(V ε
a )ϕε = γε

a. Notice that (V ε
a )α = a since the inclusion induced homomorphism

π(T0, ε)→ π(T, ε) is the abelianization.
In comparison with [OZ, 4.2] V ε

a is represented by the word obtained by traveling
along the segment, in R2−Z2, from ε to ε + a and writing S (resp. S−1) whenever
we cross a component of Z × R from left to right (resp. from right to left) and
writing T (resp. T−1) whenever we cross a component of R× Z from below (resp.
from above).

A matrix M =
(
a
b

) ∈ GL(2, Z) defines a linear automorphism of (R2, Z2) that, for
any ε ∈ D, induces a homeomorphism µε

M : (T0, ε)→ (T0, εM). This induces νε
M :

π(T0, ε)→̃π(T0, εM) and an automorphism Ψε
M of F defined by Ψε

M = ϕεν
ε
Mϕ−1

εM .
We have γε

cν
ε
M = γεM

cM since ρµε
M = Mρ and therefore V ε

c Ψε
M = V εM

cM for all
c ∈Z2 (this equality was suggested by the referee). In particular (S)Ψε

M = V εM
a

and (T )Ψε
M = V εM

b . Notice that, for any word W (S, T ) we have (W (S, T ))Ψε
M =

W ((S)Ψε
M , (T )Ψε

M ) = W (V εM
a , V εM

b ). One has the following composition theorem.

Theorem 1. We have: i) If 〈a,b〉 = Z2 and ε ∈ D, then 〈V ε
a ,V ε

b 〉 = F .
ii) If M , N ∈ GL(2, Z) and ε ∈ D, then Ψε

NM = Ψε
NΨεN

M .
iii) If c ∈ Z2, then V ε

cM = V εM−1

c (V ε
a , V ε

b ) where M =
(
a
b

) ∈ GL(2, Z).

Proof. Since (S)ΨεM−1

M = V ε
a and (T )ΨεM−1

M = V ε
b , i) follows.

As µε
NM = µε

NµεN
M we obtain νε

NM = νε
NνεN

M ; therefore Ψε
NM = ϕεν

ε
NMϕ−1

εNM =
ϕεν

ε
NνεN

M ϕ−1
εNM = ϕεν

ε
Nϕ−1

εNϕεNνεN
M ϕ−1

εNM = Ψε
NΨεN

M which proves ii).
The identities (W (S, T ))Ψε

M = W (V εM
a , V εM

b ) and V ε
c Ψε

M = V εM
cM give V εM

cM =
V ε
c (V εM

a , V εM
b ) that is equivalent to iii).

Remarks. 1. By varying ε′ along the segment from ε to ε + a we obtain as V ε′
(m,n)

all the cyclic permutations of V ε
(m,n); also if ε′, ε ∈ D, then V ε′

(m,n) is a cyclic
permutation of V ε

(m,n) since they are conjugate and cyclically reduced. Hence, if
gcd(m, n) = 1, then {V ε

(m,n) : ε ∈D} is the set of the primitive elements of F whose
image under α is (m, n) and have minimal length (equal to | m | + | n |); this
set, which contains Wm,n, has cardinality | m | + | n | since V ε

(m,n) is not a proper
power (cf. [OZ, 4.2]).

2. In Theorem 1.ii) one needs different superscripts: There is no collection
{ΨM ∈ AutF : M ∈ GL(2, Z)} such that the image of any ΨM under λ : AutF →
OutF is M and ΨNM = ΨNΨM . That is, λ does not split since there are elements
of order 6 in OutF but not in AutF (see [LS, I.4.6]).

However there is a collection {ΨM ∈ AutF : M ∈ GL+(2, Z)}, where GL+(2,Z)
= {(m n

p q

) ∈ GL(2, Z) : m ≥ 0, n ≥ 0, p ≥ 0, q ≥ 0}, such that λ(ΨM ) = M and
ΨNM = ΨNΨM . To see this observe that SL+(2, Z), the set of matrices in SL(2, Z)
with nonnegative entries, is a free monoid on A and BAB where A =

(
1 1
0 1

)
, B =(

0 1
1 0

)
[CMZ, Lemma 3.5] and from this one obtains the monoid presentation (A, B :

B2) of GL+(2,Z), that is, every element of GL+(2,Z) can be written uniquely as
a word in A and B where the exponents of A are positive and the exponents of B
are 1. One can define (S)ΨA = ST , (T )ΨA = T , (S)ΨB = T , (T )ΨB = S and if
M = Bδ1(

∏n
i=1 AeiB)Bδ2 , n > 0, ei > 0 (i = 1, . . . , n), δj = 0, 1 (j = 1, 2), we

define ΨM = Ψδ1
B (

∏n
i=1 Ψei

AΨB)Ψδ2
B . The Ψ’s have the desired properties.
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3. By Theorem 1.iii) if M =
(
a
b

)
and (η1, η2) = εM−1, then we have a general

addition formula that implies Theorem 1.3 of [OZ]:

V ε
a+b = V

(η1,η2)
(1,1) (V ε

a , V ε
b ) =

{
V ε
a V ε

b if η1 − [η1] > η2 − [η2],
V ε
b V ε

a if η1 − [η1] < η2 − [η2].

4. It may be desirable to modify slightly the definition of the words Wm,n given
in [OZ] as follows: If n ≥ 0 define the Wm,n as in [OZ], but if n < 0 define Wm,n as
W−1
−m,−n not Wm,−n(S, T−1), as stated in [OZ]. With this modification the analog

of Theorem 1.i) holds, that is, if mq − np = ±1, then 〈Wm,n, Wp,q〉 = F .
5. If we let ε be a pair of infinitesimals [SL] that does not lie in a line in ∗R2

intersecting Z2 in more than one point and if a ∈ Z2, then V ε
a can be defined

as in the fifth paragraph. Again 〈V ε
a , V ε

b 〉 = F if 〈a,b〉 = Z2 and the assertion
1.iii) is still valid. Then, with our modification of the definition of Wm,n given

in the previous remark, Wm,n = V
(−δi2,−i)
(m,n) where i is a positive infinitesimal and

δ =

{
1 if mn ≥ 0,

−1 if mn < 0.

If kl 6= 0 and gcd(k, l) = 1, the axes and the line through the origin and (k, l)
divide the plane ∗R2 into six open regions. If the infinitesimal pairs ε and ε′

belong to the same region, then V ε
(k,l) = V ε′

(k,l). If V ′
k,l is the word defined by the

open segment from (0, 0) to (k, l) (cf. [OZ, Definition 2.1]), δ1 = sgn k and δ2 =
sgn l, then V ε

(k,l) is one of the words Sδ1T δ2V ′
k,l, T δ2Sδ1V ′

k,l, Sδ1V ′
k,lT

δ2 , T δ2V ′
k,lS

δ1 ,
V ′

k,lS
δ1T δ2 or V ′

k,lT
δ2Sδ1 depending on the region in which ε lies.

Let −→W k,l = V
i(l+i,−k+

√
2i)

k,l and←−W k,l = V
−i(l+i,−k+

√
2i)

k,l , thus, if k > 0, l > 0 and
gcd(k, l) = 1, then −→W k,l = TV ′

k,lS and ←−W k,l = SV ′
k,lT . Now, if k, l, n and q are

nonnegative integers, m > 0, p > 0 with gcd(k, l) = 1 and mq− np = d = ±1, then

Wkm+lp,kn+lq =

{−→
W k,l (Wm,n, Wp,q) if d = 1,←−
W k,l (Wm,n, Wp,q) if d = −1.

This follows from Theorem 1.iii) taking ε = (−i2,−i) and M =
(
m n
p q

)
; then

V εM−1

(k,l) =
{ −→

W k,l if d = 1,←−
W k,l if d = −1.

This gives the modification needed in [OZ, Theorem

3.5] and [LTZ, 2.1.3].

We thank the referee for the suggestions, which improved the presentation of the
paper.
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