A GEOMETRIC PROOF OF A THEOREM ABOUT NON-DUAL RENORMINGS

LIBOR VESELÝ

(Communicated by Dale Alspach)

Abstract. We give a simple geometric proof of a result by Davis and Johnson that every nonreflexive Banach space X admits an equivalent norm in which X is not isometric to a dual space. Moreover, our renorming keeps unchanged the original norm on a given finite-codimensional subspace and makes this subspace norm-one complemented.

Let X be a real Banach space. We shall say that a norm $\|\cdot\|$ on X (or the space $(X,\|\cdot\|)$) is non-dual if $(X,\|\cdot\|)$ is not isometric to a dual space.

W. J. Davis and W. B. Johnson proved in [DJ] that every nonreflexive Banach space admits a non-dual renorming. This result was strengthened by D. van Dulst and I. Singer ([vDS]), who produced a renorming of any nonreflexive space such that the renormed space is not norm-one complemented in its bidual. Finally, S. V. Konyagin gave a quite simple proof of the following yet stronger result [Ko]: every nonreflexive Banach space has an equivalent norm in which a three-point set fails to have Chebyshev centers. (See, e.g., [Ho] for the definition of Chebyshev centers and for the fact that each bounded subset of X admits a Chebyshev center whenever X is norm-one complemented in its bidual.)

We present here a simple short geometric proof of a stronger form of the result by Davis and Johnson (Corollary 2). Here “simple” means that it uses only classical tools (James’ theorem, Krein-Šmulian theorem) and not results from renorming theory.

For a Banach space X, we denote by B_X its closed unit ball and by X^* its dual space.

Theorem. Let $(X,\|\cdot\|)$ be a nonreflexive Banach space. Then there exists a norm $\|\cdot\|$ on $X \oplus \mathbb{R}$ such that

(a) $\|(x,0)\| = \|x\|$;

(b) the natural projection $P: X \oplus \mathbb{R} \to X$, $P(x,t) = x$, has norm one;

(c) $(X \oplus \mathbb{R},\|\cdot\|)$ is non-dual.

Proof. Let $f \in X^*$ be any functional that does not attain its norm (cf. [Ja]). Let us denote

$L = B_X \cap f^{-1}(0)$,

$C = \text{conv} \left[(B_X \times \{0\}) \cup (L \times \{1\}) \cup (L \times \{-1\}) \right]$.
(The reader is invited to use an easily made diagram.) Then \(B_{X_{\ell_1 \oplus \mathbb{R}}} \subset C \subset B_{X_{\ell_1 \oplus \infty \mathbb{R}}}, \) and \(C \) is symmetric. (The symbols \(\oplus_1 \) and \(\oplus_\infty \) denote respectively the \(\ell_1 \)-sum and the \(\ell_\infty \)-sum.) Thus \(C \) is the unit ball of an equivalent norm \(\| \cdot \| \) on \(X \oplus \mathbb{R} \), and moreover,

\[
B_X = \{ x \in X : (x, 0) \in C \} \subset P(C) \subset P(B_{X_{\ell_1 \oplus \infty \mathbb{R}}}) = B_X.
\]

Thus \(a), (b) hold.

To prove \(c)\), suppose that \((X \oplus \mathbb{R}, \| \cdot \|) \) is isometric to \(Z^* \). If we denote by \(w^* \) the weak-star topology \(\sigma((X \oplus \mathbb{R}, \| \cdot \|), Z) \), then \(C \) is \(w^* \)-compact, and hence also the set

\[
L_0 := L \times \{ 0 \} = ((0, 1) + C) \cap ((0, -1) + C)
\]

is \(w^* \)-compact. This implies that also

\[
(f^{-1}(0) \times \mathbb{R}) \cap C = L \times [-1, 1] = \text{conv} \left[((0, 1) + L_0) \cup ((0, -1) + L_0) \right]
\]

is \(w^* \)-compact. By the Kreĭn-Šmulian theorem (cf. [D-S] or [Sch]), \(f^{-1}(0) \times \mathbb{R} \) is \(w^* \)-closed since it is \(bw^* \)-closed. But \(f^{-1}(0) \times \mathbb{R} \) is the kernel of the functional \(F = (f, 0) \in X^* \oplus \mathbb{R} = (X \oplus \mathbb{R})^* \). Hence \(F \) can be identified with an element of \(Z \), and \(F \) attains its norm on \(C \). In other words, \(F^{-1}(\|F\|) \) intersects \(C \). But this is in contradiction with the fact that \(f \) does not attain its norm on \(B_X \). Indeed, \(f^{-1}(\|f\|) \) does not intersect \(B_X \), and (by \(a), (b)\) \(\|f\| = \|F\| \); thus \(F^{-1}(\|F\|) = f^{-1}(\|f\|) \times \mathbb{R} \) does not intersect \(B_X \times \mathbb{R} \) and the latter set contains \(C \). \(\square \)

Corollary 1. For every positive integer \(n \), each nonreflexive Banach space is isometric to an \(n \)-codimensional norm-one complemented subspace of a non-dual Banach space.

Proof. Apply the Theorem \(n \) times. \(\square \)

From Corollary 1, we obtain the following strengthening of the theorem by Davis and Johnson.

Corollary 2. Let \(E \) be a nonreflexive Banach space and let \(X \subset E \) be a proper closed subspace of finite codimension. Then \(E \) has an equivalent non-dual norm which coincides with the original norm on \(X \) and makes \(X \) norm-one complemented.

Proof. Observe that \(E \) is isomorphic with \(X \oplus \mathbb{R}^n \) for \(n = \text{codim} X \) (where the norm on \(X \) is the one inherited from \(E \), and \(X \) is nonreflexive. Apply Corollary 1. \(\square \)

References

Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy
E-mail address: libor@vmimat.mat.unimi.it