Ample divisors on the blow up of $\mathbf {P}^n$ at points
HTML articles powered by AMS MathViewer
- by E. Ballico
- Proc. Amer. Math. Soc. 127 (1999), 2527-2528
- DOI: https://doi.org/10.1090/S0002-9939-99-05401-5
- Published electronically: April 28, 1999
- PDF | Request permission
Abstract:
Fix integers $n,k,d$ with $n\ge 2,d\ge 2$ and $k>0$; if $n=2$ assume $d\ge 3$. Let $P_1,\dotsc ,P_k$ be general points of the complex projective space $\mathbf {P}^n$ and let $\pi :X\to \mathbf {P}^n$ be the blow up of $\mathbf {P}^n$ at $P_1,\dotsc ,P_k$ with exceptional divisors $E_i:=\pi ^{-1}(P_i)$, $1\le i\le k$. Set $H:=\pi ^*(\mathbf {O}_{\mathbf {P}^n}(1))$. Here we prove that the divisor $L:=dH-\sum _{1\le i\le k}E_i$ is ample if and only if $L^n>0$, i.e. if and only if $d^n>k$.References
- Flavio Angelini, Ample divisors on the blow up of $\textbf {P}^3$ at points, Manuscripta Math. 93 (1997), no. 1, 39–48. MR 1446189, DOI 10.1007/BF02677456
- Andrew John Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), no. 1-4, 593–603. MR 909240, DOI 10.1007/BF01458083
- A. Van de Ven, On the $2$-connectedness of very ample divisors on a surface, Duke Math. J. 46 (1979), no. 2, 403–407. MR 534058, DOI 10.1215/S0012-7094-79-04617-9
Bibliographic Information
- E. Ballico
- Affiliation: Department of Mathematics, University of Trento, 38050 Povo, Trento, Italy
- MR Author ID: 30125
- Email: ballico@science.unitn.it
- Received by editor(s): August 10, 1997
- Published electronically: April 28, 1999
- Communicated by: Ron Donagi
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2527-2528
- MSC (1991): Primary 14N05; Secondary 14C20, 14M20
- DOI: https://doi.org/10.1090/S0002-9939-99-05401-5
- MathSciNet review: 1676319