Uniform bounds for stably integral points on elliptic curves
HTML articles powered by AMS MathViewer
- by Patricia L. Pacelli
- Proc. Amer. Math. Soc. 127 (1999), 2535-2546
- DOI: https://doi.org/10.1090/S0002-9939-99-05429-5
- Published electronically: May 19, 1999
- PDF | Request permission
Abstract:
We show that a conjecture by Lang and Vojta regarding integral points on varieties of logarithmic general type implies the existence of a uniform bound on the number of stably $S$-integral points on an elliptic curve over a degree-$d$ number field.References
- Dan Abramovich, Uniformité des points rationnels des courbes algébriques sur les extensions quadratiques et cubiques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 6, 755–758 (French, with English and French summaries). MR 1354720
- Dan Abramovich, Uniformity of stably integral points on elliptic curves, Invent. Math. 127 (1997), no. 2, 307–317. MR 1427620, DOI 10.1007/s002220050121
- Lucia Caporaso, Joe Harris, and Barry Mazur, Uniformity of rational points, J. Amer. Math. Soc. 10 (1997), no. 1, 1–35. MR 1325796, DOI 10.1090/S0894-0347-97-00195-1
- Shigeru Iitaka, Algebraic geometry, North-Holland Mathematical Library, vol. 24, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties. MR 637060, DOI 10.1007/978-1-4613-8119-8
- S. Kamienny and B. Mazur, Rational torsion of prime order in elliptic curves over number fields, Astérisque 228 (1995), 3, 81–100. With an appendix by A. Granville; Columbia University Number Theory Seminar (New York, 1992). MR 1330929
- Serge Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159–205. MR 828820, DOI 10.1090/S0273-0979-1986-15426-1
- Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449 (French). MR 1369424, DOI 10.1007/s002220050059
- Patricia L. Pacelli, Uniform boundedness for rational points, Duke Math. J. 88 (1997), no. 1, 77–102. MR 1448017, DOI 10.1215/S0012-7094-97-08803-7
- K. Rubin and A. Silverberg, Families of elliptic curves with constant mod $p$ representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 148–161. MR 1363500
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- P. Vojta. A higher dimensional Mordell conjecture, in Arithmetic Geometry, (G. Cornell and J. H. Silverman, eds.), Springer-Verlag, (1986).
Bibliographic Information
- Patricia L. Pacelli
- Affiliation: Department of Mathematics, Barnard College, Columbia University, New York, New York 10027-6598
- Email: pacelli@math.columbia.edu
- Received by editor(s): September 2, 1997
- Published electronically: May 19, 1999
- Additional Notes: It is a pleasure to thank Dan Abramovich and Glenn Stevens for encouraging me to pursue this work. Dan Abramovich was also kind enough to read earlier versions of this paper and provide extremely helpful comments
- Communicated by: Ron Donagi
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2535-2546
- MSC (1991): Primary 11Gxx, 14Gxx
- DOI: https://doi.org/10.1090/S0002-9939-99-05429-5
- MathSciNet review: 1676288