Further extension of the Heinz-Kato-Furuta inequality
HTML articles powered by AMS MathViewer
- by Mitsuru Uchiyama
- Proc. Amer. Math. Soc. 127 (1999), 2899-2904
- DOI: https://doi.org/10.1090/S0002-9939-99-05266-1
- Published electronically: April 23, 1999
- PDF | Request permission
Abstract:
Let $T$ be a bounded operator on a Hilbert space $\mathfrak {H},$ and $A,B$ positive definite operators. Kato has shown that if $\Vert T x \Vert \leq \Vert A x \Vert$ and $\Vert T^{*} y \Vert \leq \Vert B y \Vert$ for all $x, y \in \mathfrak {H}$, then $|(Tx , y)| \leq ||f(A)x|| \; ||g(B)y||,$ where $f(t), g(t)$ are operator monotone functions defined on $[0, \infty )$ such that $f(t) g(t)=t$. Furuta has shown that $|(T|T|^{\alpha +\beta -1}x,y)|\leq ||A^{\alpha }x|| ||B^{\beta }y||, \text { where } 0 \leq \alpha ,\beta \leq 1, 1\leq \alpha + \beta .$ Let $f(t), g(t)$ be any continuous operator monotone functions, and set $h(t) = f(t) g(t) /t$ for $t >0.$ We will show that $Th(|T|)$ is well defined and $|(T h(|T|)x,y)| \leq ||f(A)x|| \; ||g(B)y||.$ Moreover, we will extend this result for unbounded closed operators densely defined on $\mathfrak {H}.$References
- Takayuki Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc. 120 (1994), no. 3, 785–787. MR 1169027, DOI 10.1090/S0002-9939-1994-1169027-6
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177 – 216.
- Marvin Rosenblum and James Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications. MR 822228
Bibliographic Information
- Mitsuru Uchiyama
- Affiliation: Department of Mathematics, Fukuoka University of Education, Munakata, Fukuoka, 811-4192, Japan
- MR Author ID: 198919
- Email: uchiyama@fukuoka-edu.ac.jp
- Received by editor(s): June 6, 1997
- Received by editor(s) in revised form: December 9, 1997
- Published electronically: April 23, 1999
- Additional Notes: This research was partially supported by Grant-in-Aid for Scientific Research.
- Communicated by: David R. Larson
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 2899-2904
- MSC (1991): Primary 47A63, 47A30, 47B25
- DOI: https://doi.org/10.1090/S0002-9939-99-05266-1
- MathSciNet review: 1654068