SINGULAR SETS AND MAXIMAL TOPOLOGIES

G. J. KENNEDY AND S. D. MCCARTAN

(Communicated by Alan Dow)

Abstract. Spaces which are maximal with respect to a semi-regular property are characterised. Furthermore, a method to construct such topologies is given. Consequently, new characterisations of maximal pseudocompact spaces and of maximal Q.H.C. spaces are presented. Known characterisations of maximal connected spaces and of maximal feebly compact spaces are given alternative proofs.

1. Introduction

The family of all topologies definable for an infinite set X is a complete atomic lattice (ordered by inclusion), and is often denoted $LT(X)$. When T_1, T_2 are members of $LT(X)$ such that $T_1 \subseteq T_2$, we say that T_2 is an expansion of T_1. A topological property R is called contractive (expansive) when, for a given member T of $LT(X)$ with property R, any weaker (stronger) member of $LT(X)$ has property R; then, given a contractive property R, a member T of $LT(X)$ is said to be maximal with respect to R if and only if T has property R but no stronger member of $LT(X)$ has property R. When appropriate, we shorten this to, T is maximal R.

Given $T \in LT(X)$, recall that a T-open set V is T-regular open if $V = \text{int}_T \text{cl}_T V$. The topology generated by the family of T-regular open sets is called the semi-regularisation of T and denoted by T_s. Furthermore, T and T_s have precisely the same regular open sets and consequently, $(T_s)_s = T_s$ [17]. A topological property R is called semi-regular when $T \in LT(X)$ is R if and only if $T_s \in LT(X)$ is R [3]. Hausdorff and connectedness are the classic examples of semi-regular properties.

Given $T \in LT(X)$ and a subset V of X, the boundary of V, $(\text{cl}_T V - \text{int}_T V)$, is denoted by $\partial_T V$. If D is a family of subsets of X, the topology generated by $T \cup D$ is denoted by $(T \cup D)$. In the special case when $D = \{A\}$ for some $A \subseteq X$ we write $(T \cup D)$ as $T(A)$.

The concept of a singular set was introduced by Guthrie and Stone in 1977 to construct a maximal connected expansion of the real line [8, 10]. In 1986, Neumann-Lara and Wilson generalised the notion of a singular set to characterise T_1 maximal connected spaces [14]. In this paper we refine and further generalise the notion of a singular set to establish, for any contractive topological property, a characterisation...
of a submaximal space which is maximal with respect to the contractive property. Of course, for contractive semi-regular properties (which include connectedness, pseudocompactness, feebly compactness and Q.H.C.) we will have established a complete characterisation of maximality. Indeed, motivated by the construction of Guthrie and Stone [10], we provide a general method of constructing topologies which are maximal with respect to a semi-regular property.

Throughout this paper we assume no separation axioms unless they are explicitly stated. We conclude this section by listing some basic results which we use in subsequent sections.

Lemma 1.1. Given \(\mathcal{T} \in LT(X) \), \(\mathcal{T} = (\mathcal{T}_s \cup \mathcal{D}) \) where \(\mathcal{D} \) is the filter of \(\mathcal{T} \)-dense and open sets, and therefore is a filterbase of \(\mathcal{T}_s \)-dense sets. Furthermore, \(\langle \mathcal{T}_s \cup \mathcal{F} \rangle_s = \mathcal{T}_s \), when \(\mathcal{F} \) is a filterbase of \(\mathcal{T}_s \)-dense sets [2].

Definition 1.2. Given \(\mathcal{T} \in LT(X) \), \(\mathcal{T} \) is submaximal if every \(\mathcal{T} \)-dense set is \(\mathcal{T} \)-open.

Theorem 1.3. Given \(\mathcal{T} \in LT(X) \), the following statements are equivalent:

(i) \(\mathcal{T} \) is submaximal.
(ii) The family of \(\mathcal{T} \)-dense open sets is an ultrafilter of \(\mathcal{T}_s \)-dense sets.
(iii) For any \(\mathcal{K} \in LT(X) \) such that \(\mathcal{T} \subseteq \mathcal{K}, \mathcal{K} \neq \mathcal{T}_s \).
(iv) Every subset of \(X \) is the union of an open set and a closed set.
(v) Every subset of \(X \) is the intersection of an open set and a closed set.
(vi) For every subset \(A \) of \(X \) which is not open, there are non-empty proper closed sets \(F_1, F_2 \) such that \(F_1 \subseteq A \subseteq F_2 \).
(vii) Every subset \(A \) of \(X \), for which \(\text{int}A = \emptyset \) is closed.
(viii) Every subset \(A \) of \(X \), for which \(\text{int}A = \emptyset \) is discrete.
(ix) \(\text{cl}(A) - A \) is closed, for every subset \(A \) of \(X \).
(x) \(\text{cl}(A) - A \) is discrete, for every subset \(A \) of \(X \).

Proof. [1], [2], [11] and [17]. \(\square \)

So if \(\mathcal{R} \) is a contractive semi-regular property, then a maximal \(\mathcal{R} \) topology is submaximal. Also, every \(\mathcal{R} \) topology has a submaximal \(\mathcal{R} \) expansion (constructed by declaring open an ultrafilter of dense sets, thus ensuring condition (ii) of Theorem 1.3 is satisfied). Recall that a topology is \(T_{ES} \) if every singleton is either open or closed [12, 13]. A submaximal topology is \(T_{ES} \) [11].

Lemma 1.4. If \(\mathcal{T} \in LT(X) \) is submaximal and \(B \subseteq X \), then \((\text{int}_B \text{cl}_B \text{int}_B) \cup \{x\} \) is \(\mathcal{T}(B) \)-open, for all \(x \in B - \text{int}_B B \).

Proof. \((X - B) \cup (\text{int}_B B) \cup \{x\} \) is \(\mathcal{T} \)-dense and so by hypothesis is \(\mathcal{T} \)-open. Now

\[
(\text{int}_B B) \cup \{x\} = B \cap [(X - B) \cup (\text{int}_B B) \cup \{x\}]
\]

and so is \(\mathcal{T}(B) \)-open. Thus, \((\text{int}_B \text{cl}_B \text{int}_B) \cup \{x\} \) is \(\mathcal{T}(B) \)-open. \(\square \)

Note. Essentially this lemma is a refinement of [7, Lemma 5], and although simple, it is powerful when considering maximality. It essentially proclaims that an expansion of a submaximal topology is constructed by declaring open certain sets of the form \(V \cup \{x\} \), where \(V \) is regular open and \(x \in X \).
2. Singular set theory

Throughout this section we assume that \mathcal{R} is a contractive topological property.

Definition 2.1. Given $\mathcal{I} \in LT(X)$ has property \mathcal{R}, V is \mathcal{I}-regular open and $x \in X$. Then, $V \cup \{x\}$ is said to be a \mathcal{I}-singular (with respect to \mathcal{R}) set at x, if $\mathcal{I}(V \cup \{x\})$ has property \mathcal{R}.

Note. Clearly, any regular open set is singular at each of its points. More generally, A is a singular (w.r.t. \mathcal{R}) set when either A is regular open, or there exists $x \in A$ such that $A - \{x\}$ is regular open and $\mathcal{I}(A)$ enjoys the property \mathcal{R}. It can be observed that, after Lemma 4.1 later, this definition refines and generalises that of Neumann-Lara and Wilson [14].

Example 2.2. Consider the real line with the usual topology. Let V be the following union of open intervals, $(-1, 0) \cup \left\{ \bigcup_{n=1}^{\infty} \left(\frac{1}{2n+1}, \frac{1}{2n} \right) \right\}$. Then $V \cup \{0\}$ is a singular (w.r.t. connected) set at 0, but is not an open set.

Definition 2.3. Given $\mathcal{I} \in LT(X)$, \mathcal{I} is called non-singular (w.r.t. \mathcal{R}) if \mathcal{I} has property \mathcal{R} and every singular (w.r.t. \mathcal{R}) set is \mathcal{I}-open.

Note. This generalises the definition of Guthrie and Stone [8].

Theorem 2.4. Given $\mathcal{I} \in LT(X)$ is submaximal and \mathcal{R}. Then \mathcal{I} is maximal \mathcal{R} if and only if \mathcal{I} is non-singular (w.r.t. \mathcal{R}).

Proof. Suppose \mathcal{I} is \mathcal{R} but not maximal \mathcal{R}. Then there is a set $B \subset X$ such that $\mathcal{I}(B)$ is a proper \mathcal{R} expansion of \mathcal{I}. So there is a point $x \in B - int_{\mathcal{I}}B$. Now $V = int_{\mathcal{I}}cl_{\mathcal{I}}B$ is \mathcal{I}-regular open, however $V \cup \{x\}$ is not \mathcal{I}-open, since \mathcal{I} is submaximal and $int_{\mathcal{I}}B \cup \{x\} = (V \cup \{x\}) \cap [int_{\mathcal{I}}B \cup (X - cl_{\mathcal{I}}B) \cup \{x\}]$. But, by Lemma 1.4 above, $V \cup \{x\}$ is $\mathcal{I}(B)$-open and so, as \mathcal{R} is contractive, $\mathcal{I}(V \cup \{x\})$ is \mathcal{R}. That is, $V \cup \{x\}$ is a \mathcal{I}-singular (w.r.t. \mathcal{R}) set which is not \mathcal{I}-open.

The converse is immediate. \hfill \Box

Corollary 2.5. Suppose that $\mathcal{I} \in LT(X)$ and \mathcal{R} is a semi-regular property. Then \mathcal{I} is maximal \mathcal{R} if and only if \mathcal{I} is non-singular (w.r.t. \mathcal{R}).

Theorem 2.6. Given $\mathcal{I} \in LT(X)$, \mathcal{I} is non-singular (w.r.t. \mathcal{R}) if and only if \mathcal{I} is \mathcal{R} and for every regular open set V and every non-isolated point x in the subspace $X - V$, $V \cup \{x\}$ is not singular (w.r.t. \mathcal{R}) in the space X.

Lemma 2.7. Suppose $\mathcal{I} \in LT(X)$ is \mathcal{R}, $A \subseteq X$ and \mathcal{M}_x is a filterbase of \mathcal{I}-singular (w.r.t. \mathcal{R}) sets at x, where $x \in X$. Let $\mathcal{I}^* = \langle \mathcal{I} \cup \mathcal{M}_x \rangle$. Then (using a convenient change of notation) the \mathcal{I}^*-closure of A is described by

$$\overline{A}^* = \begin{cases} \overline{A}, & \text{if } x \in (M - \{x\}) \cap A \text{ for every } M \in \mathcal{M}_x, \\ \overline{A} - \{x\}, & \text{if } x \notin (M - \{x\}) \cap A \text{ for every } M \in \mathcal{M}_x. \end{cases}$$

Proof. Let $y \in \overline{A} - \{x\}$. Then a $(\mathcal{I}^* - \mathcal{I})$-neighbourhood of y contains a set of the form $G \cap M$ where $y \in G \in \mathcal{I}$ and $y \in M \in \mathcal{M}_x$. By definition of a singular set, either M or $M - \{x\}$ is \mathcal{I}-regular open so that $G \cap M$ is a \mathcal{I}-neighbourhood of y. But $y \in \overline{A}$, so $G \cap M \cap A \neq \emptyset$, that is, $y \in \overline{A}$. Hence, $\overline{A} - \{x\} \subseteq \overline{A}^* \subseteq \overline{A}$. Finally, it is clear that $x \in \overline{A}^*$ if and only if $x \in (M - \{x\}) \cap A$ for every $M \in \mathcal{M}_x$. \hfill \Box
Corollary 2.8. Suppose $\mathcal{T} \in LT(X)$ is \mathcal{R}, and \mathcal{M}_x is a filterbase of \mathcal{T}-singular (w.r.t. \mathcal{R}) sets at x, where $x \in X$. Let $\mathcal{T}' = \langle \mathcal{T} \cup \mathcal{M}_x \rangle$. If $G \in \mathcal{T}'$ and $x \notin G$, then $G \in \mathcal{T}$.

Lemma 2.9. Suppose $\mathcal{T} \in LT(X)$ is \mathcal{R}, and that every singleton \mathcal{T}-singular set is \mathcal{T}-open, while \mathcal{M}_x is an ultrafilter of \mathcal{T}-singular (w.r.t. \mathcal{R}) sets at x, where $x \in X$. Let $\mathcal{T}' = \langle \mathcal{T} \cup \mathcal{M}_x \rangle$. If \mathcal{T}' is \mathcal{R}, then every \mathcal{T}-singular set at x is \mathcal{T}'-open.

Proof. Suppose $V \cup \{x\}$ is \mathcal{T}'-singular at x but is not \mathcal{T}'-open, so we may assume that V is \mathcal{T}'-regular open and that $x \in \partial_{\mathcal{T}} V$. By Corollary 2.8 V is \mathcal{T}-open and by Lemma 2.7 $cl_{\mathcal{T}} V = cl_{\mathcal{T}} V$. Then since $\mathcal{T} \subseteq \mathcal{T}'$, $V \subseteq int_{\mathcal{T}} cl_{\mathcal{T}} V \subseteq int_{\mathcal{T}} cl_{\mathcal{T}} V = V$ and therefore V is \mathcal{T}-regular open. Now for each $M \in \mathcal{M}_x$, $M \cap (V \cup \{x\}) \neq \emptyset$ because $x \in \partial_{\mathcal{T}} V$ and also $\mathcal{T}(M \cap (V \cup \{x\})) \subseteq \mathcal{T}'(V \cup \{x\})$. But \mathcal{R} is contractive and the intersection of any two regular open sets is regular open, thus $V \cup \{x\}$ meets each member of \mathcal{M}_x at a \mathcal{T}-singular set at x, yet $V \cup \{x\} \notin \mathcal{M}_x$ (since $V \cup \{x\} \notin \mathcal{T}'$). That is, \mathcal{M}_x is not an ultrafilter of \mathcal{T}-singular sets at x.

Theorem 2.10. Suppose \mathcal{R} is a semi-regular property and that $\mathcal{T} \in LT(X)$ is \mathcal{R}, and every singleton \mathcal{T}-singular set is \mathcal{T}-open. Let \mathcal{D} be an ultrafilter of \mathcal{T}-dense sets. Given $x \in X$, let \mathcal{M}_x be an ultrafilter of \mathcal{T}-singular (w.r.t. \mathcal{R}) sets at x. Let $\mathcal{T}' = \langle \mathcal{T} \cup \mathcal{D} \cup (\cup_{x \in X} \mathcal{M}_x) \rangle$. If \mathcal{T}' has the property \mathcal{R}, then \mathcal{T}' is a maximal \mathcal{R} expansion of \mathcal{T}.

Proof. $\mathcal{T}' = \langle \mathcal{T} \cup \mathcal{D} \rangle$ is submaximal, so \mathcal{T}' is submaximal. Suppose $V \cup \{x\}$ is \mathcal{T}'-singular at x but is not \mathcal{T}'-open. As every singleton \mathcal{T}-singular set is \mathcal{T}-open, if $M \cup \{x\} \in \mathcal{M}_x$, then $x \in cl_{\mathcal{T}} M$ and so necessarily $x \in cl_{\mathcal{T}} M$. Thus $int_{\mathcal{T}} V$ is \mathcal{T}'-regular open and so must be \mathcal{T}-regular open. Now as \mathcal{T}' is submaximal and $(int_{\mathcal{T}} V) \cup \{x\} = (V \cup \{x\}) \cap [(int_{\mathcal{T}} V) \cup (X - V) \cup \{x\}]$ we have

$$\langle \mathcal{T}' \cup \mathcal{M}_x \cup \{(int_{\mathcal{T}} V) \cup \{x\}\} \rangle \subseteq \mathcal{T}'(V \cup \{x\})$$

But \mathcal{R} is contractive, and $V \cup \{x\}$ is \mathcal{T}'-singular, so $\langle \mathcal{T} \cup \mathcal{M}_x \cup \{(int_{\mathcal{T}} V) \cup \{x\}\} \rangle$ is \mathcal{R}. Now $(int_{\mathcal{T}} V) \cup \{x\}$ cannot be $\langle \mathcal{T} \cup \mathcal{M}_x \rangle$-regular open (otherwise, $V \cup \{x\}$ is \mathcal{T}'-open), so by Corollary 2.8 above, $int_{\mathcal{T}} V$ is $\langle \mathcal{T} \cup \mathcal{M}_x \rangle$-regular open, and therefore, $(int_{\mathcal{T}} V) \cup \{x\}$ is $\langle \mathcal{T} \cup \mathcal{M}_x \rangle$-singular set at x, which is not $\langle \mathcal{T} \cup \mathcal{M}_x \rangle$-open (since $V \cup \{x\}$ is not \mathcal{T}'-open). This contradicts the statement of Lemma 2.9 above.

Note. A connected T_{ES} topology is an example of a topology in which every singleton singular (w.r.t. connected) set is open. Also, a Q.H.C. almost H-space (feebly compact almost E_1-space) is an example of a topology in which every singleton singular (w.r.t. Q.H.C. (feebly compact)) set is open (see Definition 4.3 later).

The key to this construction is in finding suitable ultrafilters of singular sets which ensure the expanded topology possesses the property \mathcal{R}. Although this method appears difficult, Lemma 1.4 confirms that it is necessary for expansions of submaximal \mathcal{R} topologies. Guthrie, Stone and Simon showed that it is possible to find suitable ultrafilters of singular sets on the real line which preserve connectedness [10, 18].

Question. Is there a Tychonoff non-singular (w.r.t. connected) topology?

If not, then there is no Tychonoff topology which is maximal connected. Tkačenko et al. have shown that no metrizable space is maximal connected and that certain classes of Tychonoff spaces are not maximal connected [19].
3. THE SEMI-REGULAR NATURE OF NON-SINGULARITY

In general, if $\mathcal{T} \in LT(X)$, and \mathcal{T}_s is non-singular, then \mathcal{T} is non-singular.

Theorem 3.1. Suppose \mathcal{R} is contractive, semi-regular, and that $\mathcal{T} \in LT(X)$ is non-singular (w.r.t. \mathcal{R}). Then every \mathcal{T}_s-singular set $V \cup \{x\}$ such that $x \in \partial_{\mathcal{T}_s} V$ is \mathcal{T}_s-open.

Proof. Suppose $\mathcal{T}_s(V \cup \{x\})$ is \mathcal{R}, where V is \mathcal{T}_s-regular open and $x \in \partial_{\mathcal{T}_s} V$. Of course, V is \mathcal{T}-regular open and $\partial_{\mathcal{T}_s} V = \partial_{\mathcal{T}} V$. Now $\mathcal{T} = (\mathcal{T}_s \cup \mathcal{D})$, where \mathcal{D} is a filterbase of \mathcal{T}_s-dense sets. But $x \in \partial V$, so \mathcal{D} is a filterbase of $\mathcal{T}_s(V \cup \{x\})$-dense sets, and because \mathcal{R} is semi-regular, $(\mathcal{T}_s \cup \mathcal{D} \cup \{V \cup \{x\}\}) = \mathcal{T}(V \cup \{x\})$ is also \mathcal{R}. Hence $V \cup \{x\}$ is \mathcal{T}-singular at x, and so by hypothesis is \mathcal{T}-open. But $x \in \partial V$ so $x \in V$, that is, $V \cup \{x\} = V \in \mathcal{T}_s$. \square

Theorem 3.2. Suppose $\mathcal{T} \in LT(X)$ and every singleton is either \mathcal{T}-open or \mathcal{T}_s-closed. Then \mathcal{T} is non-singular if and only if \mathcal{T}_s is non-singular.

Corollary 3.3. The property ‘non-singular and every singleton is either regular open or regular closed’ is a semi-regular property.

4. APPLICATIONS OF SINGULAR SET THEORY

It transpires that a singular set may readily be characterised in terms particular to the existing topology and without reference to any expansions (see Lemmas 4.1, 4.4 and 4.6 below). As a consequence of Corollary 2.5, a complete internal characterisation of a topology which is maximal w.r.t. a contractive semi-regular property is easily established. This considerably enlarges Cameron’s ‘class of maximal topologies’ [4].

Lemma 4.1. Suppose $\mathcal{T} \in LT(X)$ is connected, and that V is non-empty \mathcal{T}-regular open, while x is non-isolated in the subspace $X - V$. Then $V \cup \{x\}$ is not \mathcal{T}-singular (w.r.t connected) at x if and only if there is a non-empty clopen subset, C, of $X - \{x\}$ such that $x \notin \text{cl}_\mathcal{T}(V \cap C)$.

Proof. $\mathcal{T}^* = \mathcal{T}(V \cup \{x\})$ is disconnected if and only if there is a non-empty proper \mathcal{T}^*-clopen set C. We may assume $x \notin C$, so by Corollary 2.8, C is \mathcal{T}-open. Also, C is \mathcal{T}^*-closed, but \mathcal{T} is connected, so by Lemma 2.7, $\text{cl}_\mathcal{T} C = C \cup \{x\}$. Hence, C is non-empty and \mathcal{T}-clopen in $X - \{x\}$ and there is a \mathcal{T}-neighbourhood N of x such that $N \cap (V \cup \{x\}) \cap C = \emptyset$. \square

Theorem 4.2. Given $\mathcal{T} \in LT(X)$, \mathcal{T} is maximal connected if and only if \mathcal{T} is connected, submaximal, and for every regular open set V and for all $x \in \partial V$ there is an open set C such that $\partial C = \{x\}$ and there is a regular open neighbourhood N of x such that $N \cap V \cap C = \emptyset$ (that is, \mathcal{T} is submaximal and nearly maximal connected [6]).

Proof. This is immediate by Lemmas 1.1, 4.1 and Corollary 2.5. \square

Note. Recall Theorem 3.1 above and observe that Clark and Schneider’s term nearly maximal connected is a semi-regular property. In addition it is evident that, if Neumann-Lara and Wilson [14, Theorem 2.5] had relaxed their initial hypothesis from T_1 to T_{ES}, they could have obtained a complete characterisation of maximal connectedness.
Definition 4.3. Given $\mathcal{T} \in LT(X)$,

(i) \mathcal{T} is Quasi-H-Closed (feebly compact) if every (countable) \mathcal{T}-open cover of X has a finite subfamily whose union is \mathcal{T}-dense in X (or, equivalently, every (countable) open filterbase has a cluster point) [5, 15].

(ii) $p \in X$ is an almost H-point (almost E_1-point) if there is a (countable) filterbase of non-empty \mathcal{T}-regular open sets \mathcal{W} such that $\{p\} = \bigcap\{cl_\mathcal{T}W : W \in \mathcal{W}\}$ [15].

(iii) (X, \mathcal{T}) is an almost H-space (almost E_1-space) if every point is an almost H-point (almost E_1-point).

Lemma 4.4. Suppose $\mathcal{T} \in LT(X)$ is Q.H.C. (feebly compact). If V is a \mathcal{T}-regular open and x is non-isolated in the subspace $X - V$, then $V \cup \{x\}$ is not singular if and only if x is an almost H-point (almost E_1-point) in the subspace $X - V$.

Proof. $\mathcal{T}^* = \mathcal{T}(V \cup \{x\})$ is not Q.H.C. if and only if there is a \mathcal{T}^*-open filterbase $\mathfrak{F} = \{G_i : i \in I\}$ such that $\bigcap\{cl_\mathcal{T}G_i : i \in I\} = \emptyset$. Now there is some $G \in \mathfrak{F}$ such that $x \notin G$, and so for any $i, j \in I$, $G_i \cap G_j \neq \{x\}$ (otherwise, $G_i \cap G_j = \emptyset$). By Lemma 2.8, for each $i \in I$, $G_i - \{x\} \subseteq int_\mathcal{T}G_i \subseteq G_i$, so that $\mathfrak{F}' = \{int_\mathcal{T}G_i : i \in I\}$ is a filterbase of \mathcal{T}-open sets. But \mathcal{T} is Q.H.C., so \mathfrak{F}', and therefore \mathfrak{F}, has a \mathcal{T}-cluster point. However, if p is a \mathcal{T}-cluster point of \mathfrak{F}, then there is a set $G_0 \in \mathfrak{F}$ such that $p \in (cl_\mathcal{T}G_0) - (cl_\mathcal{T}G_0)$, so by Corollary 2.8 $p = x$, and there is a \mathcal{T}-neighbourhood N of x such that $N \cap V \cap G_0 = \emptyset$. Now $G_0 \notin V$, since $x \in cl_\mathcal{T}G_0$, and because V is \mathcal{T}-regular open, $G_0 \cap (X - cl_\mathcal{T}V) \neq \emptyset$. It follows that, for all $i \in I$,

$$(int_\mathcal{T}G_i) \cap (X - cl_\mathcal{T}V) \neq \emptyset$$

and that

$$\mathcal{H} = \{int_\mathcal{T}G_i \cap (X - cl_\mathcal{T}V) \neq \emptyset : i \in I\}$$

is a \mathcal{T}-open filterbase and that x is the only \mathcal{T}-cluster point of \mathcal{H}. Furthermore,

$$\{x\} = \bigcap\{cl_\mathcal{T}int_\mathcal{T}cl_\mathcal{T}[G_i \cap (X - cl_\mathcal{T}V)] : i \in I\},$$

so that x is an H-point in $X - V$. (Note, by letting $|I| = \aleph_0$ in the above argument we have established that $V \cup \{x\}$ is not singular (w.r.t. feebly compact) if and only if x is an almost E_1-point in $X - V$.)

We can now prove directly the recent characterisation of a maximal feebly compact topology [15], and provide an alternative to Cameron’s characterisation of a maximal Q.H.C. topology [5].

Theorem 4.5. Given $\mathcal{T} \in LT(X)$, \mathcal{T} is maximal Q.H.C. (maximal feebly compact) if and only if \mathcal{T} is Q.H.C. (feebly compact), submaximal, and every regular closed subspace is an almost H-space (almost E_1-space).

Note. Again recall Theorem 3.1 above and notice that the property every regular closed subspace is an almost H-space (almost E_1-space) is a semi-regular property [15].

Lemma 4.6. Suppose $\mathcal{T} \in LT(X)$ is pseudocompact, and that V is \mathcal{T}-regular open, while x is non-isolated in the subspace $X - V$. Then $V \cup \{x\}$ is not singular if and only if there is an unbounded function $f : X \to \mathbb{R}$ which is continuous on $X - \{x\}$, and for any open interval O_x containing $f(x)$ there is a \mathcal{T}-neighbourhood N of x such that $N \cap V \subseteq f^{-1}(O_x)$.
which is continuous on X_T there is an isolated point isolated point However, see also [16, Theorem 2.4] and [9, Corollary 11A] which makes no reference to expansions, and so answers Cameron’s question [3].

Note. This is a complete characterisation of maximal pseudocompact topologies which makes no reference to expansions, and so answers Cameron’s question [3]. However, see also [16, Theorem 2.4] and [9, Corollary 11A].

References

Department of Pure Mathematics, Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland

E-mail address: g.kennedy@qub.ac.uk

E-mail address: D.McCartan@qub.ac.uk