Singular hyperbolic systems
Authors:
C. A. Morales, M. J. Pacifico and E. R. Pujals
Journal:
Proc. Amer. Math. Soc. 127 (1999), 3393-3401
MSC (1991):
Primary 58F10, 58F15
DOI:
https://doi.org/10.1090/S0002-9939-99-04936-9
Published electronically:
May 4, 1999
MathSciNet review:
1610761
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We construct a class of vector fields on 3-manifolds containing the hyperbolic ones and the geometric Lorenz attractor. Conversely, we shall prove that nonhyperbolic systems in this class resemble the Lorenz attractor: they have Lorenz-like singularities accumulated by periodic orbits and they cannot be approximated by flows with nonhyperbolic critical elements.
- [1] R. Bamón, R. Labarca, R. Mañé, M.J. Pacifico, The explosion of singular cycles, Publ. Math. IHES 78 (1993), 207-232. MR 94m:58152
- [2] C. Conley, Isolated sets and the Morse index, CBMS Regional Conf. Series in Math., Amer. Math. Soc. Providence R.I. 38 (1978). MR 80c:58009
- [3] W. de Melo, J. Palis, Geometric theory of dynamical systems, Springer-Verlag (1982). MR 84a:58004
- [4] C. I. Doering, C. I., Persistently transitive vector fields on three-dimensional manifolds, Dynamical Systems and Bifurcation Theory, Pitman Research Notes in Mathematics Series 160 (1987), 59-89. MR 89c:58111
- [5] J. Guckenheimer, A strange strange attractor, The Hopf bifurcation and its applications, Applied Mathematical Series 19 (1976), 368-381. MR 58:13209
- [6] J. Guckenheimer, R. F. Williams, Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979), 59-72. MR 82b:58055a
- [7]
S. Hayashi, Diffeomorphisms in
satisfy Axiom A, Erg. Th. & Dyn. Sys. 12 (1992), 233-253. MR 94d:58081
- [8] M. Hirsch, C. C. Pugh, Stable manifolds and hyperbolic sets, Proc. Amer. Math. Soc. Symp. Pure Math. 9 (1970), 133-163. MR 42:6872
- [9] R. Labarca, M. J. Pacífico, Stability of singular horseshoe, Topology 25 (1986), 337-352. MR 87h:58106
- [10]
C.A. Morales, M.J. Pacifico, E.R. Pujals, On
-robust transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris 326 (1998), 81-86. CMP 99:02
- [11] J. Palis, F. Takens, Hyperbolicity and sensitive chaotic dynamic at homoclinic bifurcation, Cambridge University Press 35. MR 94h:58129
- [12] L.P. Shilnikov, Talk at Nizhny-Novgorov University (1996).
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F10, 58F15
Retrieve articles in all journals with MSC (1991): 58F10, 58F15
Additional Information
C. A. Morales
Affiliation:
Université de Bourgogne, Laboratoire de Topologie, B.P.400, 21011, Dijon Cedex-France
Address at time of publication:
Instituto de Matemàtica, Universidade Federal do Rio de Janeiro, C.P. 68.530, CEP 21.945-970, Rio de Janeiro, Brazil
Email:
cmorales@u-bourgogne.fr, morales@impa.br
M. J. Pacifico
Affiliation:
Instituto de Matemàtica, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, Brazil
Email:
pacifico@impa.br
E. R. Pujals
Email:
enrique@impa.br
DOI:
https://doi.org/10.1090/S0002-9939-99-04936-9
Keywords:
Lorenz attractor,
hyperbolicity,
Axiom A
Received by editor(s):
November 24, 1997
Received by editor(s) in revised form:
January 22, 1998
Published electronically:
May 4, 1999
Additional Notes:
This work was partially supported by CNPq-Brasil, Faperj-Brasil, Pronex-Brasil. The first author was partially supported by CNRS-France.
Communicated by:
Mary Rees
Article copyright:
© Copyright 1999
American Mathematical Society